Publikationen

Mit unseren Publikationen decken wir die unterschiedlichsten Forschungsbereiche ab, die sich im Feld von Mensch, Aufgabe und Technik ergeben. Neben traditionellen Themen der Wirtschaftsinformatik wie Wissensmanagement und Geschäftsprozessmanagement, finden Sie dabei auch Beiträge zu aktuellen Themen wie Blended Learning, Cloud Computing oder Smart Grids. Nutzen Sie diesen Überblick, um sich einen Eindruck über die Bandbreite und Möglichkeiten der Forschung der Wirtschaftsinformatik am Standort Essen zu verschaffen.

Art der Publikation: Beitrag in Zeitschrift

"Hey Siri, Don't Make Me Mad" - Overcomming User Annoyances With Voice Assistants

Autor(en):
Strauss, Christina; Harr, Michael Dominic; Schütte, Reinhard; Wimmer, Simon
Titel der Zeitschrift:
Proceedings of the European Conference on Information Systems
Veröffentlichung:
2024
Sprache:
English
Schlagworte:
Voice Assistants, Siri, User Annoyances, Large Language Model, Digitalization
Volltext:
“HEY SIRI, DON’T MAKE ME MAD” – OVERCOMING USER ANNOYANCES WITH VOICE ASSISTANTS
Link zum Volltext:
https://aisel.aisnet.org/ecis2024/track19_hci/track19_hci/7/
Vortrag zu dieser Publikation:
European Conference on Information Systems (ECIS)
Zitation:
Download BibTeX

Kurzfassung

This study examines the effects of integrating a technically advanced and more human-like large language model into a voice assistant to assess, how technical advancements mitigate user annoyances. Therefore, a generative pre-trained transformer was integrated into Siri and made available to 23 interview participants. Preliminary results reveal a decrease in user-reported annoyances, showing that the integration not only improves technical accuracy but also enhances the perceived humanness of interactions. However, subsequent interviews indicated that the distinction between the effects of technical advancements and the infusion of humanness emerged as critical, indicating a complex interplay between these factors. It is therefore planned to differentiate between technical and human improvements in the further development of this article. The results contribute to the discourse on optimizing voice assistants by pinpointing the reduction of user annoyances as a pivotal factor in improving user experience, suggesting pathways for future enhancements in voice assistant platforms.