Publikationen

Mit unseren Publikationen decken wir die unterschiedlichsten Forschungsbereiche ab, die sich im Feld von Mensch, Aufgabe und Technik ergeben. Neben traditionellen Themen der Wirtschaftsinformatik wie Wissensmanagement und Geschäftsprozessmanagement, finden Sie dabei auch Beiträge zu aktuellen Themen wie Blended Learning, Cloud Computing oder Smart Grids. Nutzen Sie diesen Überblick, um sich einen Eindruck über die Bandbreite und Möglichkeiten der Forschung der Wirtschaftsinformatik am Standort Essen zu verschaffen.

Art der Publikation: Beitrag in Zeitschrift

Selecting appropriate process models for IT projects: Towards a tool-supported decision approach

Autor(en):
Harr, Michael; Seufert, Sarah
Titel der Zeitschrift:
Wirtschaftsinformatik (WI) 2023 Proceedings
Veröffentlichung:
2023
Sprache:
EN
Schlagworte:
IT Project Management, Process Models, Decision Model, Self-Enforcing Network, Contingency Theory.
Volltext:
Selecting appropriate process models for IT projects: Towards a tool-supported decision approach (868 KB)
Link zum Volltext:
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1100&context=wi2023
Vortrag zu dieser Publikation:
Wirtschaftsinformatik Conference (2023)
Zitation:
Download BibTeX

Kurzfassung

The appropriate selection of suitable process models plays an important role for IT project success. To aid in decision-making, IT project management literature offers a plethora of decision models for selecting suitable process models, however, hybrid process models are often neglected and adoption in practice is low or non-existent. To address this challenge, we draw on contingency theory to develop and implement a tool-supported decision model for the selection and evaluation of appropriate process models for IT projects, thereby leveraging artificial intelligence and machine learning in the context of a self-enforcing network. Our model provides an objective tool to assess process model suitability. Results from a conducted online survey with project management experts indicate high validity. Therefore, we contribute to the field of IT project management by expanding AI-based decision models for selecting and evaluating process models through extending the range of covered models and implementing inherent weighting of criteria.