Linguistic Structures in the Light)
of the Digital Transformation: oo
Addressing the Conflict Between

Reference and Change

Ulrich Frank

1 Introduction

We are in the middle of a gigantic transformation that is unprecedented in the history
of the humankind. While we do not know what the exact outcome of this transforma-
tion will be, it seems obvious that it will result in fundamental changes. It will not only
change the way we work and live, but, also, how we learn, speak—and think. Change
of this dimension leaves many puzzled, is perceived as a threat by not only a few, and
regarded as a fabulous opportunity by some. As researchers in Business Information
Systems we have the privilege to not only study the digital transformation and the
manifold phenomena it creates, but also to be among those who are asked for advice
with respect to shaping the transformation for the good of society. Therefore, the
digital transformation does not only create fascinating research questions, but also
a serious responsibility for researchers in our field. This situation demands for ask-
ing essential questions regarding the subject and objective of research in Business
Information Systems. First, the prevalent model of research in Information Systems
focusses on studying the actual use of information technology and its development.
Following the impressively successful neo-positivist model of research in the natural
sciences, it aims at describing and eventually explaining observable phenomena. For
this purpose, hypotheses that were derived from theories are tested against empirical
data. While this approach is convincing at first sight, because it corresponds to a
wide-spread understanding of science, it is accompanied by serious doubts about its
suitability. They comprise principal differences between social systems and nature,
the peculiarities of human cognition and thought, and philosophical concerns about
the applicability of the correspondence theory of truth. Against the background of the
digital transformation, there is a further concern that might be even more convinc-
ing than epistemological or methodological objections: is it sufficient to study the

U. Frank (X))
University of Duisburg-Essen, Essen, Germany
e-mail: ulrich.frank @uni-due.de

© Springer Nature Switzerland AG 2019 41

K. Bergener et al. (eds.), The Art of Structuring,
https://doi.org/10.1007/978-3-030-06234-7_5

ulrich.frank@uni-due.de

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06234-7_5&domain=pdf
mailto:ulrich.frank@uni-due.de
https://doi.org/10.1007/978-3-030-06234-7_5

42 U. Frank

present to develop attractive and feasible orientations for change? Can the structures
that are identified with current patterns of developing and using information systems
be applied to future systems and their use, too? Are they sufficient to develop images
of a future world that could inspire the transformation? I am skeptical that this will be
the case. Since there are no theories that would allow for predicting the future, itis a
daring and careless, if not irresponsible assumption that the future will be an extrap-
olation of the past. A second, more specific question relates to the design of business
information systems. The development of methods and tools for supporting analysis
and design is at the core of research in Business Information Systems. Is it appropri-
ate to use comprehensive analysis and design methods in times of disruptive change,
where yesterday’s requirements may be outdated today already? With respect to the
development of business information systems, conceptual models have been for long
the undisputed instrument of choice. In particular, reference models that serve as a
foundation of a wide range of software systems are especially promising (Becker,
Delfmann, & Knackstedt, 2007, Becker, Algermissen, Niehaves, & Delfmann, 2005,
Fettke & Loos, 2007). They are not only an attractive research topic. Furthermore,
they offer substantial benefits for organizations, too. The reuse of thoroughly devel-
oped conceptual models enables better software systems at lower costs. However, in
recent years, this assumption has been challenged, especially by the proponents of
so-called “agile” approaches. This brings us to a further essential question. Is it still
appropriate to focus on conceptual models or are code-oriented approaches better
suited to cope with the peculiarities of an ever-changing world?

To analyze these questions, I will at first look at a principal need of all systems,
technical and social, to work properly and to satisfy economic constraints. Without
reference, systems cannot survive. They would not allow for communication and
integration, would not enable the evolution of economies of scale, and without ref-
erence, software systems would literally make no sense. Second, I will look at the
need for designing information systems that are facilitators of change rather than
inhibitors. At first sight, the need for reference, and the need for supporting change
are in conflict. However, as I will try to show, there are ways to substantially relax
this conflict. They do not only depend on the development of powerful abstractions,
but also on education programs that emphasize the prospects of abstraction.

2 The Need for Reference

There is no communication without reference. The words or signs we use to express
a thought need to refer to concepts that we share (or assume to share) with the
recipients of our messages. Software systems depend on reference, too. This applies
in two respects. First, the words used in program code refer to (virtual) memory
locations, types, instructions, etc. Second, to make sense of software and, hence, to
use it properly, it needs to include references to concepts its users are familiar with.
This is typically achieved through words or signs used in the domain where a program
is deployed. For communication, and for software to work properly, references must

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 43

be reliable. References must not be corrupted, e.g. by redirecting them or by deleting
the referenced concept or artefact. In other words, references should be stable.

2.1 The Pivotal Role of Conceptual Models

Software systems are linguistic artefacts. Their development requires some kind of
implementation language, the constructs of which are mapped to the instruction set
of a computer. In an ideal case, there is a formal implementation or specification
language that allows taking advantage of formal methods to ensure that the software
satisfies its requirements and is free of contradictions. However, apart from pure
formal semantics, a formal representation does not include any meaning. In particular,
it does not help with analyzing requirements and mapping them appropriately to a
software architecture. For understanding a domain, to communicate about it, and
for eventually re-organizing it, it is essential to use concepts that make sense to
us and that are suited to guide us with appropriately structuring it. To serve this
purpose, conceptual modelling makes use of modelling languages that allow referring
simultaneously to concepts of implementation languages and to concepts of the
language used in the targeted domain. Concepts of the domain language need to
be reconstructed with the concepts offered by the modelling language. Figure 1
illustrates the role of conceptual models that are specified with a general-purpose
modelling language (GMPL).

Conceptual Model

Customer
firstName: String
lastName: String

phone: String represents
email: String
revenues: Real
: through
[R Class . - i
o Programming Language
2 N
[3 I S S b
¢ . Data Type .. class Customer {
=X through String firstName;
L R " Trefeee-String lastName;
Attribute ~eeee String phone;
c I String email;
We need to know the ommon elementary concepts Float TRy

(Modelling language) S|}

last name, first name,
and revenues of a
customer...”

.An order includes
positions..."

Information System
,,,,,,,,,,, corresponds

Domain of Discourse

Fig. 1 Illustration of conceptual modelling

ulrich.frank@uni-due.de

44 U. Frank

There have always been students and even professional programmers who claim
that they would not need conceptual models. They are wrong. While it is conceivable
to write code without drawing a diagram that represents a conceptual model, writing
code without a model of the domain is not possible. Doing without conceptual models
would mean doing without thinking: “But besides intuition there is no other kind of
cognition than through concepts.” (Kant, 1998, B93, A 68). It would also mean to
ignore the pivotal relevance of codified knowledge: “Models are proffered truths. To
proffer truth is the human means of acquiring knowledge. In this sense, cognitive
acquisition, human learning is essentially mediated by representation.” (Wartofsky,
1979).

A conceptual model serves as a reference in various ways. First, it provides a
common representation for developers and prospective users they can refer to in
order to reduce the chance of misunderstanding. Second, it can be used as a common
reference by various development teams in order to foster cross-application reuse
and integration. The benefits of conceptual modelling are accompanied by serious
challenges. From an economic perspective, it is the question how much effort is
justifiable for the development of conceptual models, and how this effort can be
reduced. From an epistemological perspective, it is a challenge to assess the quality
of a model, or, in other words, the quality of the knowledge represented by a model.
From both perspectives, it is relevant to know how conceptual models need to be
designed to enable flexible information systems that allow the convenient adaptation
to changing requirements.

2.2 The Ambivalence of Semantics

Reuse is the most promising approach to reduce development costs. There are two
principal approaches to promote reuse in conceptual models. Both approaches can be
combined. Reference models cover a range of possible applications. At best, a refer-
ence model can be applied directly without adaptations. Domain-specific modelling
languages (DSML) provide modellers with domain concepts (see Fig. 2). Hence,
they narrow the gap between a domain and the representation of a corresponding
software system. Thus, they foster modelling productivity and model quality. While
GPML allow for designing any kind of model, even the most absurd ones, a DSML
excludes models that violate the embedded domain-specific constraints.
Developing reference models with a DSML is especially promising, because it
facilitates safe and convenient customization. However, designing a reference model
or a DSML for reuse is confronted with a serious challenge. It is related to principal
conflicts. On the one hand, there is a conflict between range of reuse and produc-
tivity of reuse. On the other hand, there is a conflict between stability of references
and flexibility. The more specific a model artefact, or the concept of a modelling
language, is, in other words, the more domain-specific the semantics it includes, the
better it is suited to foster productivity of reuse. However, at the same time, specific
concepts are limited to a certain context, that is, their range of reuse, and, hence, the

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 45

< Sales Department >
Conceptual Model

%% represents
StockInfo
Check availability £
E]
5 o
Sales | =
Department @»| *
] i Implementation Language
u N
<4 BusinessProcess .. (DSL)
&
h h Service e Tt cwsdl s operation
throug . . name="check_availability">
. OrganisationalUnit 4
<wsdl:portType
,Sales department is in Common domain-specific name="StockInfo“>
charge of the order concepts (DSML)

management
process..."

.A stock information
service should offer...”

,,,,,,,,,,, corresponds

Domain of Discourse

Fig. 2 Illustration of DSML

economies of scale they enable are restricted. To justify investments, reference mod-
els and modelling languages should be stable. At best, they should be standardized.
However, at the same time, a standard may be an inhibitor of change, because the
costs to abandon a standard may be prohibitively high. The more specific a model
or a modelling language is, the more likely it is that it will not last for too long in an
ever changing world.

The ambivalent nature of semantics also affects another pivotal aspect of infor-
mation system design. Integration of system parts requires common concepts that
all parts can refer to in order to communicate. The more specific these concepts are,
the more effective communication will be, or the higher the level of integration they
enable. Take, for example, two systems that exchange data, which represent prod-
ucts. If a product is represented by a string only, it can be mistaken for anything.
The more semantics is incorporated in the representation, the better are the chances
for the receiver to apply an appropriate interpretation. At the same time, the range
of integration will decrease, since only components can be integrated that include
references to a specific concept.

Against the background of this conflict, it seems reasonable to follow a wide-
spread rationale of systems design, which is reflected by the slogan of “loose cou-
pling” and by technologies such as service-oriented architectures. Components that
are coupled via interfaces with little semantics only, e.g., XML documents, can be
replaced by a wider range of other components that can cope with those interfaces,
too. At the same time, such an approach is not satisfactory. On the one hand, it leads
to redundancy across loosely coupled (badly integrated) components, which would
compromise maintainability. On the other hand, it seems strange that the efficiency

ulrich.frank@uni-due.de

46 U. Frank

of communication between components is reduced. Who wanted to communicate in
a language consisting of a few primitive concepts such as string, integer, etc. only?

3 Coping with Change

Conceptual models are sometimes seen as inhibitors of change. With respect to the
effort and time it takes to create a comprehensive model, it is not beside the point
to suppose they are already outdated at the time when they are released. Against
this background, it does not come as a surprise that conceptual modelling has been
discredited during the last years. At the same time, other approaches to cope with
change have gained remarkable attention. They are based on the assumption that
top-down approaches that demand for a comprehensive conceptualization before the
implementation starts are not feasible or that having them done by humans is too
expensive and too slow.

3.1 Agile Approaches to the Rescue?

About 20 years ago, a book on “extreme programming” (Beck, 2000) became a
driver of a movement that had a remarkable impact on the practice of software devel-
opment. Based on a manifesto of 12 principles, the proponents of so called agile
approaches promised to uncover “better ways of developing software by doing it and
helping others do it.” (Agile Manifesto) They addressed various critical issues that
the academic field of software engineering had widely ignored. Software develop-
ment is not a mere engineering task. Instead, its success depends on communicating
with customers, on collaboration, on budgets, management support and—on good
software developers. While stressing the importance of these factors can be seen as
an enrichment of traditional approaches to software development, a further aspect of
the manifesto represents a radical criticism of software engineering. Software engi-
neering is based on the assumption that the comprehensive design of a system before
its implementation is a prerequisite of avoiding mistakes. Taken to the extreme, it
means that programming is the task of proving an implementation against a given
specification (Dijkstra, 1972). The proponents of agile approaches favour testing over
proving, and, more important, the early realization of working software is given top
priority. They do not deny that starting early with partial implementations bears the
risk of missing requirements. However, they assume that requirements will change
anyway. Therefore, they recommend turning a necessity into a virtue: “Welcome
changing requirements, even late in development.” (Agile Manifesto) To cope with
changing requirements, they propose refactoring patterns (Fowler & Beck, 2010),
which address certain change requests.

The agile movement is an enigmatic and ambivalent phenomenon. There is no
doubt that it has been very successful. Many companies regard it as a necessity to

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 47

implement agile processes—or at least to pay lip service to them. Who wants to
blame developers that they prefer working in agile teams rather than in bureaucratic
organisations? Focussing on customer needs, on communication, on organisational
culture, or on testing, is certainly important. However, it seems bizarre that a software
development approach, which is supposed to guide intelligent people, has facets of a
religion, or, as Meyer ironically remarks: “With agile methods you are asked to kneel
down and start praying.” (Meyer, 2014, p. viii) Apart from that, it is the question
whether agile approaches are the preferable way to cope with change. Analysing
this question recommends to ask what it means to be agile. While the literature on
agile approaches lacks a deep reflection of this question, it seems that it mainly
emphasizes two aspects: agility as the ability to develop working solutions in time
and to successfully cope with change. It is, however, not clear, what it takes to be
agile. Preaching the slogan “embrace change” (Agile Manifesto) like a mantra is
certainly not sufficient. No reasonable software developer will embrace changing
requirements at a late stage in development (Meyer, 2014, p. 140). It is also daring
to assume that “best architectures, requirements, and designs emerge from self-
organizing teams.” (Agile Manifesto) “Responding to change over following a plan”
(Agile Manifesto) is a strange advice, too. On the one hand, it is worthless as long
as it remains unclear how to respond adequately to change. On the other hand, it
represents a radical criticism of one of our most valuable cultural assets, that is, the
idea of rationality. However, it seems that the principles of the manifesto are not to
be taken as too literal. The refusal of plans and documentation is often seen as an
advice against models. But the manifesto does not explicitly offer such an advice.
To the contrary, the memorandum includes a somewhat unmasking principle, too:
“Continuous attention to technical excellence and good design enhances agility.”
Hence, the proponents of agile methods are not so insane as to recommend the
abandonment of conceptual models. Furthermore, they are smart enough to identify
a key success factor of agility: qualified and reflective developers. To attract those
was probably one of the key drivers of the marketing campaign for agile approaches.
Our brief analysis shows that apart from certain undisputed virtues, agile approaches
do not represent a silver bullet to cope successfully with change. While they may
supplement conceptual modelling, they are definitely not suited to replace it.

3.2 Prospects and Limitations of Induction

When it comes to flexibility, the largest information system of all times is probably
the undisputed champion. Since its emergence in the early nineties of last century,
it has not only grown in volume at a breath-taking pace, but also with respect to the
spectrum of information and knowledge it represents. This kind of flexibility was
enabled by an obvious violation of a fundamental principal of information system
design. The qualification of data through types (or a schema) is of pivotal relevance
for system integrity. Types serve to define semantics of data, that is, the range of
possible values and a set of operations. The early versions of HTML, however,

ulrich.frank@uni-due.de

48 U. Frank

did not support data types apart from strings. Therefore, when I first came across
HTML, it appeared to me like a fall-back into the stone-age of data processing,
hence, like a big mistake. However, my judgement was inappropriate, because I did
not realize that the simplicity of HTML and renouncing integrity were key enablers
of flexibility and growth. Virtually every piece of information can be represented
as string. Setting up a simple HTML document can be done quickly (and does not
require an elaborate conceptual model), and changing it is not confronted with serious
integrity constraints. Of course, this kind of flexibility does not come without a price.
The lack of semantics makes it impossible to use HTML for serious data processing.
It is also an obstacle to reliable information retrieval. Despite the impressive power
of search engines, they do not enable the specification of elaborate queries that would
allow to clearly identify the intended results. On the one hand, this is caused by the
poor formal semantics of the representation. If it consists of strings only, a query that
aims at finding all sales prices of a certain product below a specific value cannot be
expressed, because that would require relational operators on numbers. On the other
hand, data types alone would not solve the problem as long as there is a huge variety
of conceptualizations (e.g., of products) and names referring to these concepts.

There are various approaches to address this limitation of HTML. Semantics of
web pages can be enriched by annotating web pages with words of a standardized
vocabulary that refer to entries of an ontology, such as, e.g., schema.org, that is sup-
posed to represent a comprehensive net of relevant concepts. In addition, formal lan-
guages such as RDF or OWL were suggested to represent content within web pages.
They do not only allow for the specification of advanced concepts, but enable deduc-
tion, too. Thus, more elaborate queries and machine analysis is possible. However,
as long as only a fraction of web contents is enhanced by semantic web technologies,
corresponding queries are likely to produce incomplete results. At the same time,
updating existing web pages, the number of which is growing every second, ex post,
is a Sisyphean task that is likely to create frustration. To cope with this challenge,
statistical approaches to infer schemata inductively from data have been proposed
in the semantic web community (e.g. Hellmann, Lehmann, & Auer, 2008; Volker &
Niepert, 2011). While these approaches did not take off so far, the revival of artificial
intelligence in general, of machine learning in particular, led to an optimistic, if not
enthusiastic appraisal of inductive approaches, especially those enabled by various
kinds of neural networks. According to its proponents, machine learning is suited to
revolutionize the process of scientific inquiry, namely the creation of theories and
hypotheses (Evans & Rzhetsky, 2010; King et al., 2009). Pentland even predicts the
end of the social sciences (Pentland, 2015). With the increasing availability of data
on social behaviour, machine learning could be used to discover invariant patterns
that would enhance the body of scientific knowledge. According to Domingos, the
demanding act of knowledge acquisition and conceptualization, which is at the core
of conceptual modelling will be widely automated soon: “In industry, there’s no sign
that knowledge engineering will ever be able to compete with machine learning out-
side of a few niche areas.” (Domingos, 2017, p. 25). As a consequence, the ability
to change information systems quickly would be substantially advanced.

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 49

Many will probably feel uncomfortable with this vision of replacing scientists
and system analysts by machine learning algorithms. But how realistic is it? There
are indeed some impressive results of machine learning approaches such as the ex-
post discovery of physical laws (King et al., 2009) or machine translation. However,
there are serious arguments against the exuberant optimism shown by proponents
like Domingos. Conceptual modelling does not just aim at finding some structure.
Instead, the linguistic structure, that is, the concepts that are required depend on
the purpose the targeted program should serve. This purpose is intentional and can
hardly be accounted for by inductive procedures. Furthermore, for software to be
usable, it needs to be represented through concepts its prospective users are familiar
with. That requires accounting for the language they speak, instead of generating
artificial concepts that reflect some kind of commonalities shared by large amounts
of data. The strongest argument against the automation of conceptual modelling is
directed at the core of inductive reasoning. Induction depends on existing data and
concepts. The future, however, may be clearly different from an extrapolation of
the past, especially in times of disruptive change. This does not only relate to data,
but to the concepts that will emerge to enable, and to cope with future technologies
and patterns of using them. In other words, the future is a (linguistic) world that
is different from the world we live in. If we assume that change is contingent, we
cannot predict the future. Instead, we could develop ideas of possible future worlds
that could serve as an orientation for change. Domingos fades this challenge out by
emphasizing a naive realist worldview: “We’re only interested in knowledge about
our world, not about worlds that don’t exist.” (Domingos, 2017, p. 25).

4 Prospects of Abstraction

We cannot think without concepts, and we cannot develop software without concep-
tual models. At the same time, the design of conceptual models is confronted with a
serious conflict. On the one hand, a conceptual model should serve as a stable and
reliable reference. This aspect is in favor of “freezing” concepts (Hoppenbrouwers,
2003). On the other hand, models that cannot keep up with an ever changing world
may impede progress. There is no recipe to eliminate this conflict. However, there
are ways to clearly relax it.

4.1 Higher Level Models

Although conceptual models may compromise the adaptability of information sys-
tems, they are also mandatory for preparing us for change. Representations in general,
conceptual models in particular serve us to develop not only an understanding of the
world we live in, but also of possible future worlds: ,,Mit Modellen machen wir
uns die Wirklichkeit des Vergangenen und die Moglichkeiten des Zukiinftigen zur

ulrich.frank@uni-due.de

50 U. Frank

Gegenwart.“! (Mahr, 2015, p. 329). However, not every model is suited to support
us with developing ideas of possible future worlds. At the same time, there is need
for models that represent the present world in a sensible way to support the real-
ization of software systems that fit today’s requirements. This challenge is similar
to the conflict we identified for the design of DSMLs, that is, the conflict between
range of reuse and productivity of reuse. To promote range of reuse, a DSML should
not be too specific. To promote productivity, it should be designed to specific pur-
poses. How could models and modelling languages respectively look like to serve
both purposes? There is, of course, no definite answer to this question. However, the
structure of natural and technical languages as it has evolved in advanced societies
may serve as an orientation. There are layers of concepts that built on each other.
More specific languages reuse concepts defined in more general languages. At the top
of this hierarchy are the concepts used in scientific disciplines followed by concepts
that represent textbook knowledge. Those concepts are then refined step by step to
suit more specific purposes. At the top level the range of reuse, that is, the range of
possible applications, is large. At the bottom level, the range of reuse is small, but
the productivity gain enabled through reuse, is high. Thus, such a hierarchical archi-
tecture of languages would not only enable to relax the conflict between range of
reuse and productivity of reuse, but would also allow building information systems
that satisfy current requirements and being open to change at the same time. The
exemplary hierarchy of concepts in Fig. 3 illustrates this idea. The more abstract a
language is, the wider is the range of possible instantiations it allows for, since it
cannot only be instantiated directly into a more specific language, but also indirectly
into further instances of its instances, etc. With respect to preparing for change that
creates clearly more flexibility. If only small changes of a model (or a language) are
required, they could be achieved on the very level of that model, e.g. by adding or
modifying properties. If more comprehensive changes are needed, one could think of
creating a different instance from the corresponding meta-model, that is, one would
stay within the scope of the same language, but the particular concepts specified with
this language would change. For more radical types of change, one could go further
up the classification level and create new higher level models/languages.

Prevalent architectures of information systems are restricted to one or maybe
two classification levels only. Hence, they do not allow for multiple levels of lan-
guages/models that are integrated in one model. A different paradigm is required to
enable that. Multi-level modelling (Atkinson & Kiihne, 2001, Frank, 2014) which
extends object-oriented languages, is one approach that does not only enable mod-
elling an arbitrary number of classification levels, but that is also supplemented
with corresponding (meta-) programming languages (Clark, Sammut, & Willans,
2008). It is based on a recursive, self-reflective language architecture. Among other
peculiarities, it introduces a new kind of abstraction that combines generalization
and classification. The concept Saddle SRI in Fig. 3, for example, would inherit an
attribute like weight from the corresponding meta-concept Saddle. At the same time,
it would instantiate the attribute color into “black”.

“Through models we take the reality of the past and the possibilities of the future into the present.”

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 51

X Product
o
S . Property
= Unit
]
Composed Compound
Product Product
Part Aggregation 34
“ State g
= Ingredient o
8 £
heel 8
f Whee
Bicycle 2
Saddle Beverage 5
Water Container §
(%]
3 Cross
2 Racer R3 B
] €Er [Bottle
= Saddle SR1
Q
g: Wheel AT1 Malt Alcohol
i
@©
g C R R3 Golden L “
g Sros.S”e\llce?‘rCR Cross Racer R3 »20l0€n Lager
g ey Serial No: CR 05 0,33
f_g 593 Bottle Bottle
o

Fig. 3 Illustration of a multi-level model/language hierarchy

4.2 “Higher” Education

While increasing the flexibility of software systems is a major prerequisite of coping
with change, it is not sufficient. “Technology creates possibilities and potential, but
ultimately, the future we get will depend on the choices we make.” (Brynjolfsson
& McAfee, 2014, p. 256). It is widely undisputed that being able to make the right
choices, hence, being able to benefit from the digital transformation instead of suf-
fering from it depends chiefly on education. It is also acknowledged by many that
there is need for new, more efficient ways of teaching and learning (Davidson, Gold-
berg, & Jones, 2010, Brynjolfsson & McAfee, 2014). It is, however, not clear what
education should aim at to improve the ability to cope with change. In his concep-
tion of change, Bateson takes on the concept of motion in physics: “Change denotes
process. But processes are themselves subject to “change”.” (Bateson, 1972, p. 283)
Hence, it makes sense to distinguish different orders of change. Based on these con-
siderations, Bateson develops a theory of learning that suggests five different levels
of learning, which are characterized by challenging previous knowledge and the pro-

ulrich.frank@uni-due.de

52 U. Frank

cesses used to acquire it, hence, by systematically raising the level of abstraction.
This kind of learning through abstraction is indeed suited to increase flexibility. If,
e.g., our knowledge is restricted to conceptualize our surroundings in a specific way,
we will be in trouble, if we travel other countries with different cultures. If, however,
we are conscious of the fact that the world we live in, that is, the technology, the
social norms, the language we are used to, is one of many possible worlds, we will be
less surprised, because we know that different conceptualizations are conceivable.
Abstraction of this kind will also foster communication and integration, because it
tells us that beyond the differences between specific cultural peculiarities, there are
commonalities shared by all cultures. If our perception of the world is not restricted
to actual experience, but to an open horizon of the possible, we will be able to make
sense of a yet unknown future instead of feeling lost.

This, however, is a major challenge. While we need concepts to think a possible
future, we need to be aware of the fact that the future will be constituted by a language
different from the one we speak. Therefore, taking the creation of possible futures to
the extreme is a frightening endeavor: “The future can only be anticipated in the form
of an absolute danger. It is that which breaks absolutely with constituted normality
and can only be proclaimed, presented, as a sort of monstrosity.” (Derrida, 1976,
p. 5) There is certainly no recipe for a perfect curriculum to address this challenge,
but I would hope that a university that does not only appreciate critical thinking,
freedom, and originality, but provides an environment that allows taking them to an
extreme, will be able to handle it.

5 Conclusions

As much as living and acting successfully in today’s world requires structure, there is
need for structure to cope with the digital transformation, too. Ideas of possible future
worlds need to be structured, as well as processes of change. While we do not know
exactly how the future will look like, we can be pretty sure that it will be penetrated by
software systems. Therefore, conceptual models are of pivotal relevance, since they
are not only required to build software systems, but also to make sense of them and
the environment they operate in. In the end, the development of conceptual models
to prepare for the digital transformation implies to challenge and eventually reform
the language we use—and the way we think: “We want to establish an order in our
knowledge of the use of language: an order with a particular end in view; one out
of many possible orders; not the order. To this end we shall constantly be giving
prominence to distinctions which our ordinary forms of language easily make us
overlook. This may make it look as if we saw it as our task to reform language.”
(Wittgenstein, 1973, p. 132).

From a rational perspective, it does not seem satisfactory to create a possible
future without some kind of evaluation—and hope. At least, it should not be worse
than the presence, e.g., by destroying sense without offering alternative options for
sense-making that are at least functionally equivalent (Luhmann, 1967, p. 101). At

ulrich.frank@uni-due.de

Linguistic Structures in the Light of the Digital ... 53

best, we would change the concepts we use “so as to make them serve our purposes
better” (Rorty, 2000, p. 25), which recommends to reflect on our purposes, maybe
by following an advice Wittgenstein gave to philosophers: “Lal Dir Zeit” (take your
time).

References

Atkinson, C., & Kiihne, T. (2001). The Essence of multilevel metamodeling. In «UML» 2001—the
unified modeling language. Modeling languages, concepts, and tools (pp. 19-33). Berlin, London,
New York: Springer.

Bateson, G. (1972). Steps to an ecology of mind. Chicago: University of Chicago Press.

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-Wesley.

Becker, J., Algermissen, L., Niehaves, B., & Delfmann, P. (2005). Business process reference
models for reorganizing public administrations-a case study. Schriftenreihe Informatik, Electronic
Government, 134—-142.

Becker, J., Delfmann, P., & Knackstedt, R. (2007). Adaptive reference modeling: Integrating con-
figurative and generic adaptation techniques for information models. In Reference modeling:
Efficient information systems design through reuse of information models (pp. 27-58).

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity
in a time of brilliant technologies. New York, London: W.W. Norton & Company.

Clark, T., Sammut, P., & Willans, J. (2008). Superlanguages: Developing languages and applica-
tions with XMF . London: Middlesex University London.

Davidson, C., Goldberg, D., & Jones, Z. (2010). The future of thinking: Learning institutions in a
digital age. Cambridge, MA: MIT Press.

Derrida, J. (1976). Of grammatology. Baltimore: Johns Hopkins University Press.

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10), 859-866.

Domingos, P. (2017). The master algorithm: How the quest for the ultimate learning machine will
remake our world. Penguin Books Ltd.

Evans, J., & Rzhetsky, A. (2010). Machine science. Science, 329(5990), 399-400.

Fettke, P., & Loos, P. (2007). Reference modeling for business systems analysis. Hershey: Idea
Group.

Fowler, M., & Beck, K. (2010). Refactoring: Improving the design of existing code. Boston: Addison-
Wesley.

Frank, U. (2014). Multilevel modeling: Toward a new paradigm of conceptual modeling and infor-
mation systems design. Business & Information Systems Engineering, 6(6), 319-337.

Hellmann, S., Lehmann, J., & Auer, S. (2008). Learning of OWL class descriptions on very large
knowledge bases. In Proceedings of the 2007 International Conference on Posters and Demon-
strations (Vol. 401, pp. 102-103).

Hoppenbrouwers, S. J. B. A. (2003). Freezing language: Conceptualisation processes across ICT-
supported organisations.

Kant, I. (1998). Critique of pure reason. In P. Guyer & A. Wood (Eds.), The Cambridge Edition of
the Works of Immanuel Kant. Cambridge: Cambridge University Press. https://doi.org/10.1017/
CB09780511804649.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., et al. (2009). The
automation of science. Science, 324(5923), 85-89.

Luhmann, N. (1967). Soziologische Aufkldarung. Soziale Welt: Zeitschrift Fiir Sozialwis-
senschaftliche Forschung, 18(2/3), 97-123.

Mabhr, B. (2015). Modelle und ihre Befragbarkeit: Grundlagen einer allgemeinen Modelltheorie.
Erwdgen Wissen Ethik, 26(3), 329-342.

Meyer, B. (2014). Agile!: The good, the hype and the ugly. Springer.

ulrich.frank@uni-due.de

https://doi.org/10.1017/CBO9780511804649

54 U. Frank

Pentland, A. (2015). Social Physics - how social networks can make us smarter. Penguin LCC US.

Rorty, R. (2000). Universality and truth. Rorty and his critics (pp. 1-30). Oxford: Blackwell.

Volker, J., & Niepert, M. (2011). Statistical schema induction. In Proceedings of the Sth Extended
Semantic Web Conference on the Semantic Web: Research and Applications-Volume Part |
(pp. 124-138). Heidelberg: Springer Verlag.

Wartofsky, M. (1979). Models: Representation and the scientific understanding (R. Cohen, Ed.).
Sprinter Netherlands.

Wittgenstein, L. (1973). Philosophical investigations. Wiley-Blackwell.

Ulrich Frank holds the chair of Information Systems and Enter-
prise Modelling at the Institute of Computer Science and Busi-
ness Information Systems at the University of Duisburg-Essen.
His main research topic is enterprise modelling, i.e. the devel-
opment and evaluation of modelling languages, methods and
corresponding tools. He is in general interested in philosophy,
the art/science of computer programming, cognitive psychology,
linguistics, logic and sociology.

In recent years, he focused especially on multi-level domain-
specific modelling languages (DSMLs), meta-programming lan-
guages, and corresponding tools. Further areas of research
include method engineering, models at run time, methods for IT
management and research methods.

Ulrich Frank is on the editorial board of the journals “En-
terprise Modelling and Information Systems Architectures”,
“Business and Information Systems Engineering”, “Software
and Systems Modeling”, “Information Systems and E-Business
Management”, and the “Journal of Information System Mod-
eling and Design”. Ulrich Frank is a review board member of
the Deutsche Forschungsgemeinschaft (German National Sci-
ence Foundation) and the founding director of the international
student exchange network IS:link.

ulrich.frank@uni-due.de

