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Abstract. The digital transformation creates an increasing demand for
projects to prepare and realize change. The professional management of
projects demands for methods. In particular, there is not alone need for
method engineering, but also for managing the use of methods and for
method maintenance. In this paper, it will be shown that traditional
approaches to method engineering are not only limited with respect to
reuse, they also do not support the integration of method engineering and
method management. The approach presented in this paper addresses
these limitations. It is based on a mult-level language architecture, which
enables the common representation of models and code.

Keywords: Multi-level modelling · language engineering · method en-
gineering.

1 Introduction: The Need for Methods

In times of the digital transformation, many organizations need to regularly
adapt their products, their operations and possibly their entire business model
to stay competitive. In most of these cases, the adaptation will involve the con-
joint analysis and modification of an organization’s action system and its in-
formation system. Corresponding projects do not only target a contingent and
challenging subject, they also require remarkable skills and substantial resources.
Most organizations are not capable of staffing and managing those projects on
their own. As a consequence, a huge consultancy industry has evolved over
the last decades. The major companies in this industry alone employ hun-
dreds of thousands of consultants, many of which are still novices or not far
above. Therefore, it is essential for these firms as well as for other organizations
running projects under similar conditions to promote a professional manage-
ment of projects. Among other things, that recommends the use of appropriate
methods. A method is suited to foster the reuse of existing knowledge, to re-
duce risk and, hence, to promote the economics of projects. However, general-
purpose methods that can be used in a wide range of projects will usually not
be satisfactory. Instead, it seems more appropriate to focus on domain-specific
methods. For this purpose, a consultancy firm would provide a repository of
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methods, a project manager can choose from and, if required, add modifica-
tions. An example of such an approach is IBM‘s “Component Business Modeling
(https://www.ibm.com/downloads/cas/6NMP1WEP). In any case, the manage-
ment of method repositories faces serious challenges. On the one hand, it should
allow for convenient adaptations of existing methods. On the other hand, it needs
to ensure the integrity of a repository. While copy&paste might be regarded as
a convenient way of creating new methods from existing ones, it is suited to cre-
ate a maintenance nightmare. In academia, these challenges have been known
for long. The field of method engineering is based on the assumption that the
construction of particular methods should follow an engineering approach, which
among other things recommends accounting for linguistic rigor, consistency and
coherence as well as for the development of supportive tools. During the last 20
years, a plethora of approaches originating mostly in Requirements Engineering
and Software Engineering have evolved (for an intermediate overview see [15]).
The field has reached a stage of moderate maturity, which is also indicated by
the existence of a respective ISO standard [1]. At the same time, it seems that
research interest in method engineering has clearly declined during the last years.
With respect to the current and further growing relevance of methods for master-
ing the digital transformation, this seems unfortunate. Against this background,
the paper is intended to contribute to the revival of method engineering. It is
structured as follows. First, an analysis of foundational terms will conclude with
essential requirements related to the specification and management of modelling
methods. Then, it will be shown that traditional approaches to meta-modelling
have serious limitations that clearly compromise the specification and use of
methods. Subsequently, a multi-level approach to the specification, modification
and management of methods is presented. It improves reuse and adaptability.
Furthermore, it enables the integration of method specification, method use, and
project management.

2 Conceptual Foundation and Essential Requirements

Often, the term method is defined with respect to purpose: a method is aimed at
solving a class of problems. However, such a functional definition is not sufficient
for an approach to guide the specification and management of methods. To that
end, a concept of method is required that reflects its constitutional elements.
Only then, it is possible to specify a method referring to these elements and to
represent a method in a repository. And only then, we can develop requirements
to be satisfied by approaches that target the specification and management of
methods.

2.1 Terminology

In systems development and method engineering various definitions of the term
method can be found. “A method is based on models (systems of concepts)
and consists of a number of steps which must/should be executed in a given
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order.” [20, p. 7] While this definition could be misinterpreted in the sense that,
e.g., a particular data model could be constitutive for a method, its intention
seems to correspond to that of the definition proposed by Karagiannis and Fill
who regard a modelling method as being composed of a “modelling language and
a modelling procedure” [7, p. 8] Instead of using the term “modelling language”,
Lyytinen speaks of “a multitude of conceptual structures to describe, interpret
and prescribe a field of phenomena” [16, p. 5]. In line with these definitions,
we shall regard a method in general as consisting of a linguistic structure and a
process model. A linguistic structure such as a technical terminology defines con-
cepts that allow for structuring the problem domain in a purposeful way. In the
field of system development, the concepts should be suited to structure both, the
system to be built and the domain it is supposed to represent. A process model
provides guidelines for how to proceed with developing a solution. A modelling
method is a refinement of the general term. It consists of one or more mod-
elling languages and a corresponding process model (for a more comprehensive
description see [9, p. 40]).

This conception of (modelling) method focusses the syntax and semantics of
the specification that describes a method as an artefact. In addition to that, the
pragmatics of a method needs to be accounted for. The pragmatics of a method
results from the practices it is used in. These practices may be in line with the
guidelines specified with the artefact or may deviate from them. People may
only pay lipservice to those guidelines, misinterpret them, or develop their own
workarounds. Understanding these pragmatic aspects of a method is of pivotal
relevance for their success, but not of particular relevance for the focus of our
investigation.

2.2 Requirements

Metamodels are a common approach to specify the abstract syntax and semantics
of modelling languages. A process model could be created with a modelling
language designed for that purpose. Hence, methods could be specified as (meta)
models: on the one hand, metamodels would represent the modelling languages
that are being used in a method. On the other hand, a metamodel would be used
to represent the corresponding process. The modelling method would then result
from an integration of these metamodels, which could be stored and managed in
model repositories. While this conclusion is not inappropriate, it would be wrong
to regard it as the solution to our problem. An approach to the specification, use
and management of modelling methods should account for the following generic
requirements.

R1 - Support for reuse: the approach should feature abstraction concepts
that foster reuse. In an ideal case, it should be possible to reuse all knowledge
available in a domain for the specification of a method. Rationale: reuse of mature
knowledge does not only reduce the costs of developing methods substantially,
it should also contribute to method quality. This requirements has been at the
core of research on method engineering for long.
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R2 - Relax conflict between range of reuse and productivity of reuse: with
respect to economies of scale, a method should have a wide range of reuse. That
recommends the construction of methods which are not designed for specific pur-
poses, but that cover a wider range of possible project types. However, the more
generic a method is, the lower is its contribution to productivity and integrity
of a particular project. Rationale: relaxing this conflict promises clear economic
advantages. One could benefit from economies of scale without giving up on the
customized methods that are designed to specific needs. This conflict also reflects
a practical problem that every language designer is confronted with. For every
relevant concept in a domain, it has to be decided whether it should be part
of the language or rather be specified with a language. While there are a few
guidelines that support this decision, none of those is entirely convincing ( [10].
For example: a concept like “Desktop Computer” could be part of a language for
modelling IT infrastructures. Alternatively, it could be modelled as an instance
of the more generic concept “Computer”.

R3 - Support for integrity : an approach to specify methods should guide
with the construction of methods that are consistent and coherent. Rationale: a
method that lacks important aspects or that includes conflicting elements is likely
to cause problems. Furthermore, method representations that lacks integrity
compromise storing and retrieving of methods.

R4 - Integration of method and method use: the representation of a method’s
use, that is, a particular project should be integrated with a representation of the
method. Rationale: method management is not restricted to the specification and
dissemination of methods. It also includes the support of particular projects that
use a method and their monitoring. Monitoring is required to assess a project’s
performance and to contribute to its improvement. If the representations of a
method and its use are integrated, it is possible to use a method as a foundation
for project management and to enable navigation between the two levels of
abstraction.

As we shall see, satisfying these requirements is confronted with serious chal-
lenges.

3 Pitfalls of the Traditional Meta-Modelling Paradigm

Research on method engineering has resulted in various concepts to foster method
configuration and reuse of existing knowledge. It also produced metamodelling
tools that feature the convenient and fast realization of specific model editors.

3.1 Patterns of Reuse and Tools

Classification is probably the most prominent abstraction concept to foster reuse
in method engineering. It is addressed by the use of metamodels. A metamodel
provides foundational concepts that can be instantiated to specify particular
methods. In addition, composition is often referred to as a measure to achieve
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reuse. In that case, components of methods, referred to as “chunks” or “frag-
ments”, are stored in a repository. There seems to be no common definition of
chunks and fragments. Henderson-Sellers et al. [13] suggest that a fragment can
either represent a part of a process that constitutes a method or part of the prod-
uct, that is, the documents (models, code ...) the creation of which a method is
aimed at. According to this terminology, a chunk represents an aggregation of a
fragment that represents part of a process with a corresponding fragment that
represents part of a product. Both, classification and composition are well-known
approaches to promote reuse in conceptual modelling. The use of metamodels
corresponds to the construction of modelling languages. Reuse of knowledge is
especially effective in the case of domain-specific modelling languages (DSML).

Both, instantiation and composition are supported by specific tools. Meta-
modelling environments such as Eclipse, MetaEdit [17], or ADOxx [7] enable the
fast creation of modelling tools. For this purpose they take the metamodel that
specifies the abstract syntax and semantics of a modelling language as an in-
put. They also provide specific tools for the specification of the concrete syntax.
Based on that, they generate a corresponding model editor. These tools usually
focus on model editors and do not provide specific support for the specifica-
tion of corresponding process models. Tools that focus on composition usually
feature repositories. Chunks and fragments can be retrieved from a repository,
e.g., through faceted classification [18], and somehow composed to a full method.
However, the composition seems to be based on copy, paste & adapt [13].

Tools for method engineering are focussed on the specification of modelling
languages and, in part, the configuration of methods. They usually do not allow
for monitoring the use of a method, that is, they do not provide specific support
for project management. However, this is not the case, because the use of a
method is regarded as being out of scope. Instead, the application of methods is
explicitly accounted for by various authors (e.g., [14], [4]) as well as in the ISO
24744 standard. The authors speak of “endeavour” in the sense of a particular
project that is instantiated from a method. As we shall see, there is a principal
reason, why the instantiation of projects (or actual uses of methods) from a
method is not covered by metamodelling tools: the semantics of prevalent object-
oriented programming languages.

3.2 Limitations

To illustrate limitations of traditional approaches to method engineering we
look at the fictitious example of a large consultancy firm that wants to develop
a method repository. The simplified metamodel depicted in fig. 1 serves as a
language for defining specific methods. It can also be seen as a schema for storing
methods. Note that this metamodel is not to be seen as a solution but as an
illustration of a problem.
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Fig. 1. Prototypical metamodel for the specification of modelling methods

Let us assume the metamodel is used to define a method to guide the selection
of an ERP system. The process model in fig. 2 and the description of a selected
activity in the process illustrate the method.

Definition of Project Goals

Model selected Business Processes

Describe required Software Functions

Perform Comparison

Review and Refine Results

Concluding Recommendation

Business process map
IT infrastructure diagram

Goals

Input

Success Factors

Roles

Output

Budget

Fig. 2. Illustration of process model that is part of a modelling method

Now let us see, how the method could be instantiated from the metamodel.
Apparently, the activities that form the waterfall are instantiated from the meta-
class Activity. The object that serves to represent the required input is instan-
tiated from Input and linked to instances of DiagramType each of which would
refer to one or more representations of modelling languages, instantiated from
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the metaclass ModellingLanguage. Similarly, one could instantiate objects to
represent roles, goals, budget, resources, etc. But, maybe, this would not be suf-
ficient. For example, a proper application of the method might require accounting
for certain states. A business process map that is needed as input should, e.g., be
in a state that includes the definition of certain performance indicators for each
process type. Adding an attribute like “state” to DiagramType does not work,
since we are not interested in the state of a diagram type, but rather in that of a
particular diagram. While we could overload the object that represents a diagram
type to also represent particular diagrams that would clearly compromise model
integrity. It would also be impossible to define that two different instances of a
diagram type were required in different states. Using two different meta types
like “Diagram” and “DiagramType” would result in a loss of semanitics. This
lack of expressiveness becomes even more obvious, if a particular method use
should be represented. In that case, an instance of the metamodel would have
to be further instantiated. While we know that each acitivity has a certain start
and termination time, those cannot be expressed in the metamodel. Also, it is
not possible to specify the actual budget available in a particular activity – or
whether it was exceeded or not. Furthermore, it would be important to assign
actors to roles. For this purpose, it would be required to instantiate a role type
like “domain expert”, which was instantiated from Role, into a particular role
instance and link it to an instance of a class Actor. However, again that would
not be possible, because in MOF like architectures the instantiation of a class
cannot be further instantiated.

An approach to reuse method fragements would correspond to instantiate
parts of a metamodel and reuse them with further instantiations. For example,
a particular instantiation of Activity and associated instances of Goal, Input,
Role, etc. could be stored in a repository and used for the creation of a new
method. However, the challenge to avoid copy&paste semantics and the accom-
panying redundancy would remain: it is unlikely that the state of the components
in the repository will be invariantly the same across all reuse cases. For exam-
ple, within one method activity b may follow activity a, while another method
requires activity b to follow activity x.

A further shortcoming of the traditional approach to method engineering be-
comes not immediately apparent. Imagine, a large company that frequently runs
projects in areas such as software deployment, IT management, integration of
IT infrastructures, etc. is using a metamodel like the one shown in fig. 1. Each
new method would have to be created from scratch using the rather generic con-
cepts defined in the metamodel – maybe supplemented by using existing method
fragments through copy&paste. Imagine, the company would instead use more
specific meta modelling languages to define particular methods. There could, for
example, be a meta-metamodel that reflects common knowledge about software
development methods. It may include a meta-activity Analysis that defines
what is generally known about analysis of software systems. The knowledge rep-
resented by this meta-meta model (or, in other words: this meta DSML) would
then be reused for the definition of a more specific method, e.g., a method for de-
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veloping distributed systems. Again, such an approach would require sequences
of multiple instantiation, which are not supported by MOF like architectures.
This limitation has been known for some time. Various authors suggest the use
of powertypes to cope with it ( [12], [4], [14]). Powertypes are also supported
by the ISO/IEC 24744 metamodel. Apart from powertype being a cumbersome
concept that does not contribute to the readability of metamodels (even though
that may be a subjective assessment), it is restricted by the fact that it is part
of an extended MOF architecture, which means it can be used on M2 only, not
on higher levels of classification. That would hinder the definition of multiple
classification levels in order to define hierarchies of reusable DSML.

Even more important is a limitation that is not implied by the concept itself:
as long as no programming language provides generic support for powertypes,
they cannot be used for the design and implementation of tools, in particular
they could not be used for tools that integrate the representation of methods with
representations of method use (“endeavour”). Table 3.2 presents an assessment
of traditional approaches to method engineering with respect to the generic
requirements proposed in 2.2.

R1 Classification allows for defining properties of direct instances. Composition allows
for reusing particular instances. However, it is not possible to express knowledge
related to instances of instances.

R2 Each metamodel reflects a specific trade-off between range of reuse and produc-
tivity of reuse. The concepts defined with a certain method cannot be reused for
the definition of further more specific methods – except for the reuse of method
fragments. Therefore, the conflict between the two objectives of reuse can hardly
be relaxed.

R3 The integrity of a method depends on the extent of misleading interpretations its
specification allows for. The more domain-specific a meta-model is, the better are
the chances to constrain the specification of a model properly. However, it is not
possible to define constraints on instances of instances, e.g. on specific states of
diagrams.

R4 From a conceptual perspective, methods could be further instantiated into specific
method uses, because methods are conceptually specified on M1. However, apart
from the use of powertypes, it is not possible to define properties (attributes,
associations, etc.) for the classes that represent a method. Therefore, they cannot
be further instantiated. But even with powertypes, the integration of methods with
particular method instances is not possible, as long as there is no programming
language that allows for multiple levels of classification.

Table 1. Assessment according to generic requirements

4 Prospects of Multi-Level Language Architectures

The limitations of MOF like architectures as a foundation for method engineering
call for language architectures that enable higher levels of abstraction. Multi-level
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modelling has been around for some time ( [3]. It provides concepts that allow
for creating models on different levels of classification. The meta language and
language engineering environment presented in this section follows this tradition.

4.1 Multi-Level Methods in a Nutshell

While multi-level modelling may appear unusual to some, it supports in fact
a natural way of using language. In the traditional paradigm, a language is
always defined from scratch, that is, using the generic concepts of a generic meta-
modelling language (see example in fig. 1). However, that does not correspond
to the creation and use of languages in advanced societies. If, for example, a
company wants to create a method, it will very likely not start with generic
concepts such as class or attribute to design a method that fits its needs. Instead,
it will use domain-specific concepts that are known for a certain purpose, e.g.,
software development, and/or for a certain domain, such as a specific industry.
These concepts in turn are also not defined from scratch, but by using some
more general concepts known for describing methods and projects. The highest
level of such a hierarchy could be regarded as the textbook level. It reflects
generally applicable knowledge of a certain field. Fig. 3 illustrates this idea. The
boxes represent (meta-) models that define (meta-) methods. A certain method
is defined by concepts that are part of a more general method. At the top level,
the range of reuse is the highest. With every refinement step, the range of reuse
decreases, but the productivity of reuse in a particular case increases. At the
same time, the distinction between modelling language and model gets blurred.
What is a model at one level, is a language at a higher level. That corresponds
to the natural use of language. Usually, we do not bother with asking whether
a term is part of a language (which it usually is) or whether it was defined with
some other concepts (which is usually the case). Apparently, such a language
architecture clearly contributes to satisfying requirements R1 and R2, because
it fosters reuse in general and promotes range of reuse at a higher level, while
it contributes to productivity of reuse on more specific levels. It is also suited
to foster the integrity of methods (R3), since every refinement step introduces
more specific concepts that constrain the construction of methods on the level
below. Finally, it enables the integration of representations of a method and its
use (R4), because objects on M0 that represent a particular use of a method (or
in other words: a particular project) are part of the language architecture. Note
that the relationship called “specified with” represents a specific kind of intrinsic
instantiation (see the description of the FMMLx), which in fact combines aspects
of instantiation with aspects of inheritance.
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Fig. 3. Illustration of multi-level methods

In the remaining part of this section, it will be shown how a multi-level
method architecture like the one illustrated in fig. 3 can be accomplished – both
at design and at run-time.

4.2 An Executable, Multi-Level Meta-Modelling Language

The Flexible Meta Modelling Language (FMMLx) [11] is an executable multi-
level modelling language. It allows for modelling classes on an arbitrary number
of classification levels. To enable multiple instantiation steps, intrinsic properties,
that is, attributes, operations and associations can be defined for each class. For
each intrinsic property, the intended instantiation level has to be defined, which
allows for deferred instantiation. The examples in fig. 4 illustrate the default
notation of the FMMLx. The classification level of a class is indicated by the
background color of the header field. The class PeripheralDevice is on level
M3. Its intrinsic attribute serialNo is to be instantiated on M1 only. Since ever
class is an object at the same time, it may have a state. For example, the class
on M1 that represents a printer model includes data that represent technical
properties and a price. Note that objects on M0 can be included in a model, too.

320 Specification and Management of Methods



Title Suppressed Due to Excessive Length 11

Float

Money

0,*

u

  responsible for

u

  uses0

1,*

0,* 1,1

skillLevel: Score
minAvailability: Score
costPerMin: Float
     posID: String

Position

averageAvailability(): Duration

0

revenues() : Money
totalUnitsInStock() : Integer

name: String
pagePerMinute: Integer
resolution: Integer
     salesPrice: Money
     serialNo: String
     partSalesPrice: Money

Printer

0

0

M2
M3

intrinsic association, instantiated 

between objects on M0

intrinsic attribute, instantiated in 

objects on M0

intrinsic operation, instantiated

in classes on M1

Metaclass

     serialNo: String
     partSalesPrice: Money

CPL-844

 ^PeripheralDevice^
M1

^OrganizationalUnit^

^Printer^

totalRevenues() =
models() =  

readOnly = false

€ 7399.00

0

object returned by operation

object state

pagePerMinute = 
resolution =
salesPrice =

40

13

1

199.00
600

0

0

totalRevenues(): Money()
models(): Integer()
     totalUnitsInStock(): Integer()
     revenues(): Money()

name: String
readOnly: Boolean
     salesPrice: Money
     serialNo: String
     partSalesPrice: Money

PeripheralDevice

0

1

1

1

0

^MetaClass^

Klasse1

CPL-844-9423R

M0

^CPL-844^

serialNo = 
partSalesPrice = 189.99

9423R

Fig. 4. Default notation of the FMMLx

The FMMLx is implemented with XMF (eXecutable Metamodeling Facility)
( [5], [6]), which is a language execution engine that is based on a recursive
metamodel, called Xcore. Modelling and programming languages that are spec-
ified as instances of Xcore can be executed within XMF. XMF allows accessing
and modifying its own specification and its run-time system. Hence, there is no
clear distinction between the language and a respective meta language. That is,
XMF is reflective. Therefore, it facilitates navigation and introspection across
all language levels represented in a particular system. XMF includes XOCL,
an executable object constraint language. Xcore enables classes on an arbitrary
number of classification levels. However, is is not possible to assign a particular
classification level to a class. Instead, the classification level of the metaclass
Class is contingent. The particular classification level of its instances is deter-
mined dynamically, depending on the actual number of possible instantiation
steps. It does not provide direct support for deferred instantiation either. By de-
fault Class is on level M3 at first. A class that is instantiated from Class is on
M2. If this class then inherits from Class, it is lifted to M3. The same procedure
can be applied to its instances, which results in lifting the class higher to any
intended level.

The specification and implementation of the FMMLx is based on an extension
of Xcore and an intermediate layer that enables assigning a specific classification
level to a class. Fig. 5 illustrates the recursive architecture of Xcore and the
extension (properties marked with green background) added for the FMMLx.
The interface layer includes the class MetaAdaptor, which is an instance of Class
and inherits from it at the same time. It is instantiated into the class MetaClass,
which serves to create classes on particular classification levels. The instantiation
methods implemented in MethodAdaptor hide the process of lifting a class to an
intended level described above.
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End
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totalInstances(): Seg
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averageActPrice(): Float

topSeller(): Configuration

level = 5

Fig. 5. Metamodel of the FMMLx as an extension of Xcore

Apart from a slightly different terminology, the FMMLx shares core fea-
tures such as multiple classification levels and deferred instantiation with other
approaches to multi-level modelling [2], [19]. However, it offers two distinct fea-
tures that are of particular relevance for method engineering tools. Models de-
fined with the FMMLx may comprise objects on different levels of classification
– down to M0. Furthermore, it features a common representation of models and
code. Hence, there is no need to generate code from models and to cope with
the challenges implied by the synchronisation of models and code.

4.3 Application to Method Engineering

To demonstrate the benefits of multi-level languages for method engineering, we
will refer to the concepts in fig. 1 and the idea of a multi-level language hierarchy
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shown in fig. 3. One essential principle of defining concepts of a language at any
level is to express all knowledge available at that level. Only then, it is possible
to avoid the redundant repetition of this knowledge at lower levels.
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Fig. 6. Illustration of multiple levels of DSMLs integrated in one modelx

The multi-level model shown in fig. 6 illustrates how DSML can be defined
with more abstract DSML. The model shows only a small excerpt of classes that
are part of corresponding DSML, such as a hierarchy of DSML for modelling
resources, or documents. The representation of associations is restricted to a few
examples only. On a high level of classification certain associations that are to
be instantiated on lower levels, may be known already, e.g. the association “re-
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quires” between the classes Activity and Role, which is to be instantiated on
M1 only. The model illustrates a few important aspects of multi-level language
architectures. There is no clear distinction between language and language ap-
plication. Furthermore, a class may be associated with a class on any other level.
Again, this corresponds to the use of concepts in natural language. Apparently,
it is possible to integrate the representation of particular method uses on M0.
The Xmodeler allows to execute the model hierarchy. In other words, the multi-
level model becomes the conceptual foundation and the implementation of an
integrated method specification and execution environment.

5 Conclusions and Outlook

The approach presented in this paper demonstrates the potential of multi-level
language hierarchies for modelling language and models in the context of method
engineering and method use. It is suited to relax the fundamental conflict be-
tween range of reuse and productivity of reuse. It also contributes to more con-
sistent method definitions. The obvious prospects of multi-level modelling are
constrasted with two remaining research challenges. Our work on multi-level
models has shown that the classification level of a class may vary with the con-
text it is used in. For example, Document may be on M2 in one context, on M3 in
another context. While it is conceivable to use two different instantiations of the
class, that would compromise integrity, because two classes that have common
properties would have to be maintained separately. For this reason, the next ver-
sion of the FMMLx [8] will support contingent level classes, which are already
supported by the Xmodeler. Contingent level classes create the challenge to de-
fine a proper semantics. An approach based on modal logic is a promising option.
In that case, a class would be on level n in one world, on level m in another world.
A further challenge is related to multi-level models of dynamics. It would, e.g.,
be nice to define a (meta-) process for software development in general, which
could then be refined step by step to more specific processes. Unfortunately, the
specialization of process types is not possible without relaxing the substitutabil-
ity constraint. The multi-level model in fig. 6 abstracts this problem away by
specifying activities without accounting for the dynamic context they are sup-
posed to be used in. Our future research is aimed at defining a specialization
semantics for processes that is based on a relaxed notion of substitutability.
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15. Henderson-Sellers, B., Ralyte, J., Ågerfalk, P., Rossi, M. (eds.): Situational Method
Engineering (2014). https://doi.org/10.1007/978-3-642-41467-1

16. Kalle Lyytinen, Kari Smolander, Veli-Pekka Tahvanainen: Modelling case environ-
ments in systems development. In: Proceedings of CASE 1989. Stockholm (1989)

17. Kelly, S., Lyytinen, K., Rossi, M., Tolvanen, J.P.: Metaedit+ at the age of 20. In:
Bubenko, J. (ed.) Seminal contributions to information systems engineering, pp.
131–137. Springer, Berlin, New York (2013)

18. Kornyshova, E., Deneckère, R.: Method chunks selection by multicriteria tech-
niques: an extension of the assembly-based approach. In: Ralyté, J., Brinkkemper,
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