
Designing Models and Systems to Support IT
Management: A Case for Multilevel Modeling

Ulrich Frank

University of Duisburg-Essen, Germany
ulrich.frank@uni-due.de

https://www.wi-inf.uni-due.de/FGFrank/

Abstract. Refering to the domain of IT management, this paper demon-
strates conceptual strengths and economic benefits of multilevel model-
ing. In the past, IT management was primarily focussed on technical
aspects of IT infrastructures. In recent years, more and more organi-
zations became aware of the pivotal relevance their IT infrastructures
has for staying competitive. Therefore, IT managers are expected to not
only provide IT services, but also to justify investments and costs with
respect to the benefit the IT creates. On the one hand this responsibility
demands for methods that allow for reducing the complexity of both,
the IT infrastructure and the business. On the other hand, it is required
accounting for interdependencies between these two areas. Specialized
frameworks for IT management provide guidelines for specifying, man-
aging and controlling IT services. Enterprise architectures or enterprise
models support the alignment of IT and business by integrating models
of the IT infrastructure and of enterprise software systems with models
of the organizational action system. Against this background, specific
requirements of modeling IT infrastructures will be looked at in more
detail. It will then be demonstrated that a multilevel language archi-
tecture and a corresponding meta-modeling and programming facility
represent a powerful foundation for the development of advanced tools
for IT management.

Keywords: IT Management, Monitoring Tools, Models at Runtime,
DSML, Multilevel Modeling

1 Introduction

Multilevel modeling offers a number of clear advantages over the traditional mod-
eling paradigm. In general, it enables additional abstractions that foster reuse
and flexibility. It also allows for using concepts that correspond more directly
to the technical terminology in certain domains instead of overloading two-level
languages, which is likely to jeopardize system integrity by causing accidental
complexity [1]. Given these undisputed advantages, it is not surprising that mul-
tilevel modeling was embraced by some with great enthusiasm. A considerable
number of approaches to multilevel modeling have been published so far, e.g.,
[2], [3], [4], [5][6]. However, it has not evolved into a major research topic so

3

far. In practice, it has received only, if at all, marginal attention. In part, this
sobering situation may be explained with the well-known reluctance, if not resis-
tance, in academia to turn toward a new paradigm [7]. Similarly, decision makers
in practice are likely to adhere to mainstream solutions and standards in order
to protect investments and for legitimation reasons as well. In addition to those
obstacles, there are two other aspects that may have prevented multilevel model-
ing from becoming more popular. Most publications are focused on foundational
aspects such as metamodels or language architectures. Only little attention has
been paid to applying multilevel modeling to particular domains in order to
analyse specific economic benefits that could arouse interest both in researchers
and practitioners. Furthermore, the dissemination of multilevel modeling may
be hindered by the lack of corresponding programming languages, which does
not only imply the loss of semantics when models are mapped to code, but also
creates an additional challenge for the synchronization of models and code.

This paper addresses both obstacles. First, it will be shown that the domain
of IT management is in need of conceptual models that support the analysis
of a increasingly complex subject and that foster sense-making and communica-
tion between different stakeholders. While IT management faces some particular
challenges, its need for models is not idiosyncratic, but applies to any developed
professional domain. Certain aspects of IT management are especially suited to
illustrate modeling problems that cannot be satisfactorily solved within the tradi-
tional paradigm. Against this background, it will be demonstrated that a family
of multilevel DSMLs is suited to offer a solution that promotes model integrity,
modeling productivity and economies of scale. For this purpose a meta-modeling
language is presented that allows for an unbounded number of meta levels and
for the specification of so called intrinsic features. Second, an extension of a
meta-modeling and -programming environment will be presented that is based
on a recursive and reflective language architecture. It allows for the common rep-
resentation of models and code and, thus, enables versatile decision support tools
for IT management. They are suited to not only foster user empowerment by
combining (meta) modeling features with customizable monitoring capabilities,
but also to better integrate IT management with other management functions
to make it more effective and more efficient.

2 IT Management: The Need for Models

In the early days of data processing, IT departments in many companies had
a predominant technical focus. Software development and maintenance as well
as dealing with the intricacies of hardware components were top priorities. As
a consequence, the typical employee of an IT department had a technical back-
ground, often enough without an advanced qualification in software engineering.
Over the years, many IT infrastructures developed into a “zoo” of heterogeneous
applications. While the “horrors of the past” and the ever increasing complex-
ity of IT infrastructures kept IT departments busy, IT did not only turn into
the backbone of business operations, but became more and more a potential

4

enabler of future business models and, hence, a matter of survival. At the same
time, IT budgests were still growing, while IT projects often did not deliver and
the benefit of investments was hard to tell. Against this background, IT de-
partments underwent a substantial change. Most companies abandoned inhouse
development, which required employees who were able to deal with vendors and
external service providers. Line managers who realized the potential of IT to
improve their operations, developed business cases that required the adaption
of IT systems. The growing need for collaboration between business people and
IT professionals, the ever growing relevance of IT for the business and the com-
plexity of IT infrastructures led to the emergence of a specialized management
function. IT management should not only provide the required support to the
business. It should also identify new opportunities of using technology to improve
the business. Furthermore, it is supposed to control IT costs and organize IT
departments to become more efficient. At the same time, IT management should
overcome tradtional cultural barriers between IT experts and business profes-
sionals. The transition to IT management requires new organizational structures,
new skills, and methods that support the introduction of appropriate structures
and processes. To address the wide range of IT management tasks, methods and
tools are needed that account for both, the peculiarities of IT infrastructures
and the needs of businesses that will often have to adapt quickly to a changing
environment. With regard to the pivotal economic relevance of IT management,
it is not suprising that various vendors and initiatives responded do those needs.
In the following we shall look at different approaches that are aimed at sup-
porting IT management. This is to serve two purposes. On the one hand, it will
underline the pivotal relevance of concepts and conceptual models. On the other
hand, it will help to identify requirements that are not sufficiently satisfied so
far.

2.1 Focus on Databases

The vast amount of software artefacts and hardware systems that form an IT
infrastructure creates the need for tools that support inventory management,
version management, configuration management, software installation, etc. A
database that represents all IT resources together with relevant inderdependen-
cies, often referred to as “configuration management database (CMDB)”, is an
obvious choice to provide a common foundation for such tools. However, de-
signing a database schema for that purpose requires skills and resources that go
beyond the capabilities of many organizations. Furthermore, individual solutions
would impede the use of tools that rely on a database. Therefore, it seems a rea-
sonable approach to define a common schema for CMDBs and to standardize it
in order to foster protection of investment. The “Common Information Model
(CIM)”, promoted by an industry consortium of large hardware and software
vendors, the “Distributed Management Task Force (DMTF)” is the most rele-
vant attempt of this kind. It defines a schema that is documented as a set of UML
class diagrams which are structured into three layers. The “core model” includes
basic classes that are referred to in the “common model” which includes models

5

for representing application systems, hardware devices, networks, etc. Finally,
“extension schemas” are included to define possible extensions to the common
models. Figure 1 shows an excerpt of the CIM that is focused on application
systems.

CIM_ManagedSystemElement

(See Core Model)

CIM_System

 (See Core Model)

Distribution: uint16 (enum}

EnabledState: uint16 (enum, override)

StartupTime: datetime

ServingStatus: uint16 (enum)

LastServingStatusUpdate: datetime

StartApplication():uint16

StopApplication():uint16

CIM_ApplicationSystem

CIM_Service

(See Core Model)

Name:string {Key, Override}

Version:string {Key}

SoftwareElementState:uint16 {Key, Enum}

SoftwareElementID:string {Key}

TargetOperatingSystem:uint16 {Key, Enum}

OtherTargetOS:string

Manufacturer:string

BuildNumber:string

SerialNumber:string

CodeSet:string

IdentificationCode:string

LanguageEdition:string

CIM_SoftwareElement

IdentifyingNumber:string {Key, Propagated}

ProductName:string {Key, Propagated}

Vendor:string {Key, Propagated}

Version:string {Key, Propagated}

Name:string {Key, Override}

CIM_SoftwareFeature

CIM_Product

(See Core Model)

CIM_SoftwareFeatureSoftwareElements

CIM_ApplicationSystem

SoftwareFeature

1

*

*

*

*

*

CIM_ManagedElem

ent
(See Core Model)

CIM_InstalledProductImage

w*

CIM_CollectedSoftwareElements
CIM_CollectedSoftwareFeatures

CIM_Collection

CIM_MemberOfCollection

*
*

*

*

*

*

CIM_SoftwareFeatureSAPImplementation

CIM_LogicalElement

(See Core Model)

CIM_EnabledLogicalElement

(See Core Model)

*

CIM_Software

ElementComponent

1

*

*

ProductIdentifyingNumber:string {Key, Propagated}

ProductName:string {Key, Porpagated}

ProductVendor:string {Key, Propagated}

ProductVersion:string {Key, Propagated}

SystemID: string {Key}

CollectionID: string {Key}

Name: string

CIM_InstalledProduct

Fig. 1. Excerpt of CIM

To enable adaptations of schemas that go beyond predefined extensions, the
CIM is supplemented with a metamodel (see figure 2) which can be used to
define customized schemas. If tools are not only constructed to handle the CIM,
but also instances of the metamodel, user may define new schemas and still use
a standard tool. However, apparently the metamodel is generic as it includes
general purpose concepts only. Therefore, it is not possible to build tools that
can make sensible use of any possible instance of the metamodel. The DMTF
seems to be aware of this limitation, because the range of feasible instances is
restricted to “new conformant models” (http://www.dmtf.org/standards/cim).

A reliable industry standard that defines a schema for configuration manage-
ment databases promises effective support for managing IT infrastructures. It
also promotes protection of investment and vendor independence. At the same
time, it may create a problematic lock-in effect.

2.2 Management Frameworks

The introduction of IT management requires the definition of responsibilities,
services, processes and controls. Two frameworks for establishing IT manage-

6

Common Information Model (CIM) Metamodel DSP0004

30 DMTF Standard Version 3.0.1

6 CIM metamodel 896

This clause normatively defines the semantics, attributes, and behaviors of the elements that comprise 897
the CIM Metamodel. CIM Metamodel is specified as a UML user model (see the Unified Modeling 898
Language: Superstructure specification). The principal elements of the CIM Metamodel are normatively 899
shown in Figure 1. 900

 Figure 1 – Overview of CIM Metamodel 901 Fig. 2. Metamodel of the CIM ([8], p. 30

ment have achieved a remarkable dissemination. They both emerged from prac-
tice. ITIL (“Information Technology Infrastructure Library”) orginates from a
project launched by the British government. It is supposed to describe “the
organisational structure and skill requirements of an information technology or-
ganisation and a set of standard operational management procedures and prac-
tices to allow the organisation to manage an IT operation and associated infras-
tructure.” (http://www.itlibrary.org/). To this end, ITIL proposes a managerial
perspective on IT that rests on two main pillars. On the one hand, the IT in-
frastructure is encapsulated toward the business with services. The specification
of services is supported by comprehensive guidelines. On the other hand, the de-
sign of an IT organisation is supported by the definition of core functions such as

7

incident management, configuration management, change management, etc. For
each of these functions, subjects, roles, processes and checklists are defined that
provide hand-on guidelines for establishing IT management practices. ITIL of-
fers various certificates that enable organizations and employees to demonstrate
their IT management maturity.

“Control Objectives for Information and Related Technology (COBIT)” is
a framework that originates in auditing. Similar to ITIL it is supposed to sup-
port companies with establishing a professional IT management. However, it
has a different focus. Its main emphasis is on the introduction and continuous
improvement of IT governance. For this purpose, COBIT provides a framework
of responsibilities, rules and high level activities that aim among other things
at improving the alignment of IT and business, at improving the qualitiy of IT
services and at more reliable predictions of IT costs. The framework also in-
cludes the definition of corresponding metrics that serve to measure and control
IT management practices. Like ITIL, COBIT offers training courses and cer-
tificates. There is one further aspect that is shared by both frameworks. Even
though they do not include any conceptual model that was designed with an
explicit modeling language, the backbone of both framework consists of a con-
ceptual foundation in the form of technical languages that allow to structure the
subject and the responsibilities of IT management in a purposeful way. Figure
3 shows a reconstruction of concepts defined in ITIL in comparison to those
that are used in COBIT. The colour green marks concepts that are shared by
both approaches, that are, however, clearly more comprehensively defined in
ITIL. Blue indicates that corresponding concepts are defined in similar detail
in both frameworks, while red marks those concepts that are not accounted for
in COBIT. Yellow marks common concepts that are described in more detail in
COBIT.

The lack of precise metamodels may be related to the business models behind
ITIL and COBIT. Both promote training and consulting to help users develop
appropriate interpretations that fit their needs. At the same time, both frame-
works were not designed to serve as a foundation for building software tools.

2.3 Enterprise Architecture Management

IT management is more and more regarded as a pivotal management function
that does not only manage IT resources, but supports the business more di-
rectly and contributes to the strategic development of a firm. As a consequence,
IT managers are supposed to have a clear understanding of how IT should sup-
port the business and how it may contribute making a company more compet-
itive. At the same time, they should be able to efficiently communicate with
users, line managers and top management, similar to consultants. The idea of
an enterprise architecture, which was introduced by Zachman, an IBM sales rep-
resentative who aimed at improving communication with customers, intends to
provide a representation of the enterprise and its IT infrastructure that reflects
the basic building blocks and relevant dependencies. An enterprise architecture
mainly targets management audiences. For this reason, it stresses a high level

8

Eine Methode zur Unterstützung des IT‐Managements im Rahmen der Unternehmensmodellierung 135

Ansätze auf die Ein‐ und Ausgabeparameter der Prozesse ein, wobei diese in ITIL weniger
explizit spezifiziert sind als in CobiT. Die Betrachtung der technischen Infrastruktur ist so‐
wohl in CobiT als auch in ITIL recht abstrakt. Die Begriffe Infrastructure und Application (Co‐
biT) bzw. Hardware und Software (ITIL) als IT‐Ressourcen (Resource) werden zwar eingeführt,
aber kaum vertieft. Rollenbeschreibungen für die Mitarbeiter einer IT‐Organisation sowie die
Kundenmetapher enthalten ebenfalls beide Ansätze. Auch die Sicherheit von IT ist jeweils
grundlegend behandelt.

Business Process

Activity

Resource

People

Hardware Software

is
 a

is a is
a

supports

co
ns

is
ts

 o
f

Service

Service Level Agreement /
Operational Level Agreement

Role

supports

includes

fil
l

de
fin

es

Customer

Service Desk

uses

adresses

IncidentProblem

Resolution

Configuration

pa
rt o

f part of

affects

so
lv

es collects

causes

Availability

has

has
Costscauses

Change affects Releasepart of

Capacity

required at

go
ve

rn
s

negotiates

necessitates

Key Performance Indicator

m
easures

Financial Management

subject of

Budgeting

Accounting

Charging

pa
rt

of

pa
rt

of

pa
rt

of

Configuration
Management Database

st
or

ed
 in implies

Continuity

required for

ne
ce

ss
ita

tes

en
su

re
s

defines

requests

informs

Security

goal for

participates in

Input Output

needs

pr
od

uc
es

becomes Control
uses

Risk

ca
us

es

threatens

Known Error

de
cl

ar
ed

Abbildung 44: Rekonstruktion der zentralen Begriffe in ITIL

Gemeinsame Konzepte – Größere Detaillierung in CobiT

Anhand der im Vergleich zu Abbildung 44 geringen Anzahl an grün dargestellten Konzep‐
ten in Abbildung 43 lässt sich bereits schließen, dass die Detaillierung der meisten gemein‐
samen Konzepte auf Seiten von CobiT weniger ausgeprägt ist. Dies ist vor dem Hintergrund
der Zielsetzung von CobiT zu sehen, im Vergleich zu anderen IT‐Management‐Ansätzen
eine größere Abdeckung der Domäne zu leisten, was vor allem bezogen auf die Prozessdo‐
kumentation in weniger konkrete Vorgaben resultiert. Lediglich die Beschreibung der In‐
formationen (Information) sowie Aspekte des Controllings (Control) weisen in CobiT eine ho‐
he Detaillierung auf. Letzteres manifestiert sich insbesondere in einer relativ großen Anzahl
an vorgeschlagenen KPIs (Key Performance Indicator) zur Überwachung der verschiedenen
Prozesse.

Gemeinsame Konzepte – Größere Detaillierung in ITIL

Da die ITIL‐Dokumentation im Bereich des Service‐Managements im Vergleich zu CobiT
einen höheren Detailgrad aufweist, finden sich in Abbildung 44 mehr grün dargestellte ITIL‐

Fig. 3. Conceptual Reconstruction of ITIL and COBIT (copied from [9], p. 135)

of abstraction (“ballpark view”) and does not account for specific details. It is
supposed to represent essential aspects of the business, such as goals and busi-
ness processes, and to integrate them with those aspects of an IT infrastructure
that are relevant for managerial decision making. It is regarded as a pivotal
tool for promoting IT business alignment, for making IT more efficient, and
for supporting strategic (IT) management [10]. To emphasize the importance of
developing, documenting, communicating and enforcing an enterprise architec-
ture, it has been proposed to introduce a dedicated management function. Enter-
prise architecture management is not intended to replace IT management, but
is rather seen as one of the core functions of IT management. While enterprise
architectures are still often created with generic drawing tools only, there are
various attempts to provide a more formal foundation for designing enterprise
architectures (e.g., [11], [12]). One language to model enterprise architectures
has gained remarkable attention, probably also because it has become part of
TOGAF (http://www.opengroup.org/subjectareas/enterprise), a framework for
enterprise architecture management that is characterized by similar claims as
ITIL and COBIT. Archimate [13] includes a rather generic metamodel and var-
ious so called viewpoints that consist of concepts to model certain views of the
enterprise. It is unclear whether the viewpoints are intended as metamodels. In
any case, the corresponding models, which are presented in the same notation
as the one used for the models that represent particular views, remain on a high
level of abstraction. For example, they do not include attributes or multiplicites.

9

Figure 4 illustrates how modeling concepts are defined and used. The language
is designed for a high degree of adaptability. For example, every concept allows
for adding any kind of “property”, which does not, however, mean to refine its
semantics. Instead, the extension happens on the instance level and is specified
as a tuple of a name and a corresponding value. Apart from the unusual concep-
tualization, the downside of this kind of flexibility is obvious: Archimate allows
for creating models that are wrong in the sense that they are counter-factual,
e.g. an ERP system could be modeled as being part of a DBMS, or that do not
make any sense, because properties were added that are meaningless.

Fig. 4. Illustration Archimate Viewpoint and Corresponding Model

2.4 Intermediate Conclusion

The different approaches to support IT management share two common prop-
erties. First, they emphasize a pragmatic approach, either by using mainstream
technology such as CIM, or by preferring sketchy definitions over elaborate con-
ceptualizations such as ITIL, COBIT, and to a lesser extent, Archimate. Second,

10

they allow for adaptations and, in that respect, put more emphasis on flexibility
than on integrity. While Archimate claims to be a modeling language, it hardly
qualifies as a DSML. The viewpoint definitions are not metamodels that allow for
specifying types. Instead, viewpoints and the models that correspond to them
are characterized by a subtle overloading of concepts. The lack of sufficiently
clear semantics makes it virtually impossible to use Archimate models for gener-
ating code. Although there is some overlapping between the different approaches,
integrating them into one comprehensive, multi-perspective approach would be
benefitial. However, the lack of clear conceptual foundations makes it difficult
to accomplish such an integration.

3 Design and Use of DSMLs for IT Management:
Prospects and Obstactles

Our work on DSMLs for modeling IT infrastructures was at first motivated by
our long-standing research on enterprise modeling. In the early days of enterprise
modeling, it was assumed that companies need support for software development.
Accordingly, there was emphasis on integrating software design languages, such
as object-oriented modeling languages. Later, it became apparent that software
development was of less concern for most companies than managing the often
huge IT infrastructures that have emerged over the years. Therefore, we decided
to add a language for modeling IT infrastructures [9] to the range of already
existing DSMLs. Second, our work was inspired by a project with the global
market leader for data center management tools. The company board had re-
alized that focusing on tools to support the technical management of IT only
would not be sufficient in the long run. Therefore, they were looking for solutions
that put more emphasis on IT business alignment and gave users more flexibility
in adapting tools to their particular needs.

3.1 Vision: Integrated Modeling, Monitoring and Decision Support
for IT Management

It took some time to convince the seasoned software developers in the company
that a DSML that is integrated with other DSMLs for enterprise modeling could
serve as a powerful foundation for future IT management tools. However, a mod-
eling tool alone would not be sufficient for that purpose. Apart from conceptual
support for analyzing the IT and the business, IT managers also need to know
the state and the state history of particular objects, for example the availability
of a particular server or the maintenance costs of an application system. They
also need to be informed about certain events like attempts from external in-
truders to get access to sensitive data. In addition, decision making requires
various kinds of statistical analysis on sets of data. Most companies appreci-
ate general frameworks for IT management, because they do not want to start
from scratch, but simulaeously, they do not want to be restricted too much.
Against this background a vision of a future tool was developed that was based

11

on three main components. First, an existing method and toolset for creating
and managing enterprise models should be used to address the need for inte-
grating representations of the IT with those of the organizational action system.
Second, an existing DSML for modeling IT infrastructures that was already part
of the enterprise modeling method should be refined to better satisfy the needs of
prospective customers [14]. Third, a versatile dashboard system should support
managers with customizable representations of aggregate data and with notifi-
cations of relevant events. Fourth, and most appealing, the enterprise modeling
environment should be integrated with the dashboard system [15]. An IT man-
ager could study a certain model of the IT infrastructure, navigate to associated
representations of organizational goals or of business processes, and, if needed,
drill down to data representing particular objects.

3.2 Obstacles and Challenges

The enthusiasm we had developed for the vision of an advanced IT management
tool was soon contrasted by the sobering insights that an implementation of
the vision was confronted with serious obstacles. They include general problems
with the design of DSMLs that became especially apparent with the design of
a language for modeling IT infrastructures, and more specific problems that are
related to peculiarities of the subject. In general, the design of a DSML is con-
fronted with the decision whether a certain concept should become part of the
language or rather be defined with the language. Take, for example, the following
terms: Software, Operating System, ERP-System, DBMS, RDBMS, Middleware,
Printer, Laser-Printer. How could one decide whether to take the more generic
or the more specific term—or both? Criteria to support this decision have been
proposed in [16]. For being incorporated into a language, a concept’s semantics
should be invariant throughout the range of intended applications. Furthermore,
its instances should be perceived as types intuitively. Unfortunately, these cri-
teria are not sufficient to enable clear decisions. The popular advice that the
decision depends on the purpose of a language does not help much either, be-
cause a clear definition of a particular purpose will often be hardly possible and,
furthermore, the goals to be addressed with a DSML may be in conflict. An
essential conflict with the design of DSMLs results from the fact that it will
usually be reasonable to design a language for a wide range of (re-) use, because
that will promote economies of scale and, hence, the economic benefit of a lan-
guage. However, at the same time, making a language more specific promotes
the productivity of its use in those cases where it fits. Figure 5 illustrates this
conflict that requires a trade-off which will be unsatisfactory in many cases.

A further, related problem is suited to cause frustration, too. The analysis of
domain concepts often results in a hiearchy of concepts where more general, but
still domain-related terms are refined step by step to more specific terms. Fig-
ure 6 shows a typical example of this problem that seems to be rather the rule
than an exception. Obviously, such a hierarchy leads to the question whether
the refinement represents an instantiation relationship or rather a specialization
relationship. Looking at the hierarchy of terms on the left only may inspire an

12

Sc
al

e
o

f
R

eu
se

Degree of Specificity

P
o

te
n

ti
al

 P
ro

d
u

ct
iv

it
y

G
ai

n

Ef
fi

ci
en

cy
 o

f
In

te
gr

at
io

n

R
an

ge
 o

f
In

te
gr

at
io

n

Ea
se

 o
f

A
d

ap
ta

b
ili

ty

R
an

ge
 o

f
A

d
ap

ta
b

ili
ty

Product
name: String
desc.: String

Motor
name: String
torque: Integer
...

Sc
al

e
o

f
R

eu
se

Degree of Specificity

P
o

te
n

ti
al

 P
ro

d
u

ct
iv

it
y

G
ai

n

Class Device Laser-Printer

Fig. 5. Illustration of Essential Design Conflict

ontological discussion with an uncertain outcome. One can also take a more
pragmatic approach by adding properties such as attributes and operations that
are characteristic for the pictured terms. The hierarchy on the right represents
a corresponding view. Its analysis leads to a sobering result. Even though it
is an iron law of conceptual modeling that there is a clear dichotomy between
instantiation and specialization, the example indicates that it may make sense
to combine both. We know that every peripheral device has a sales price. This
is the case for any printer, too. Therefore, the attribute salesPrice should be
inherited to Printer. However, the operation numberOfModels is to be used by
Printer, which would suggest to instantiate it from PeripheralDevice. Similarily,
the attribute resolution in Printer is instantiated in classes that represent partic-
ular models, while the attribute serialNumber should be inherited from Printer
to classes that represent a model. One could argue that it is not appropriate to
assign an attribute like salesPrice to PeripheralDevice, because it is instantiated
only with specific models. However, that would result in conceptual redundancy,
because it would imply to introduce a corresponding attribute for each kind of
peripheral device again and again. There are some obvious lessons to be learnt
from examples like that. First, there are cases where a strict dichotomy of in-
stantiation and specialization (or rather inheritance) is dissatisfactory. Second,
instantiation of attributes may sometimes be deferred to a lower level. Note that
this may be the case for operations, too. An operation like numberOfDevices
could be specified with PeripheralDevice already, which would replace redundant
operations like numberOfPrinters in the example. Third, classes as well as meta-
classes may have a state and may execute operations. Therefore, they should be
regarded as objects. Unfortunately, all of these lessons are in clear contrast to
the dominant modeling paradigm, which means that they cannot be expressed
accordingly in a traditional one level (M1) object model.

A further challenge results from the idea to integrate a modeling environ-
ment with dashboard software. A dashboard is supposed to present data related
to concepts specified in models. Integration implies among other things that

13

PeripheralDevice

PR100

Printer

revenues() : Float

Printer

name: String
models = 14
pagePerMinute: Integer
resolution: Integer
salesPrice: Float
 serialNo: String
 partSalesPrice: Float

CPL-844

pagePerMinute = 40
resolution = 600
salesPrice: 199.00
serialNo: String
partSalesPrice: Float

ps32-3: CPL-844

partSalesPrice = 189.00
serialNo = ps32-3

totalRevenues() : Float

PeripheralDevice

name: String
models: Integer
 salesPrice: Float
 partSalesPrice: Float

0
0

PX450A

PeripheralDevice

salesPrice: Float
partSalesPrice: Float

numberOfModels(): Integer

Printer

salesPrice: Float
partSalesPrice: Float
resolution: Integer
pagesPerMinute: Integer
serialNumber: String

numberOfPrinters: Integer

PR100

partSalesPrice: Float
serialNumber: String

salesPrice = 99.50
resolution = 600
pagesPerMinute = 50

PX450A: PR100

partSalesPrice = 89.50
serialNumber = 'PX450A'

numberOfModels() -> 12

numberOfPrinters() -> 124

PeripheralDevice

-Mitgliedsname

-Mitgliedsname

Fig. 6. Instantiation or Specialization?

it should be possible to navigate from the dashsboard to a model et vice versa.
However, as shown in fig. 7, there is a serious obstacle that prevents a satisfactory
integration. Classes that represent a model (or a metamodel respectively) have
to be represented as objects on M0 in a modeling environment, because main-
stream object-oriented programming languages do not allow to treat classes as
objects, nor do they allow for metaclasses. Hence, “classes” in a model editor
cannot be instantiated any further. Therefore, the approach of choice is to gen-
erate code from models. Unfortunately that approach is hardly satisfactory. It
would require synchronizing models and code, which is a notorious problem that
does not allow for a satisfactory solution. It would also require a sophisticated
middleware system to establish references between the modeling environment
and the dashboard system that enable navigation at runtime. Furthermore, gen-
erating code from a model that was specified with a DSML to a general-purpose
programming language can be a demanding task.

4 Outline of a Solution

To cope with the obstacles outlined above, we supplemented our MOF-like lan-
guage architecture ([17], [18]) with various “workarounds”, but that did not re-

14

M0

M1

Runtime/Code Layer

Runtime Management

create, modify, delete,
workflow manager, GUI

manager

Instance Population

objects, workflows, ...

Schema/Code Layer

Schema Management
(SD Environment)

create, modify, delete

Schemata

class schema(ta), code,
workflow schemata, ...

Persistency Layer

Runtime Management

store & retrieve

Persistent Objects

objects, workflows, ...

M2

workflow schema
 Order

Management

instances of Order
Management

workflow
model Order
Management

 Activity
(BPMN)

IT Management Dashboard System

instance of

corresponds to

Language Layer (Metamodel)

Enterprise Modelling Environment

M0

M0

M1

Classes

Objects

IT Management Dashboard System

Schema/Code Layer

Runtime Layer

Metamodels

Metaclasses, constraints, notation ...

Models

IT infrastructure models, business process
models, workflow models ...

Enterprise Modelling Environment

Language Layer

Model Layer

M0

M1

M1

M2

Software

Printer

ERP-System

PR100x

generate

ERP-System

Printer

PR100x: PrinterTBQ-1: ERP-System

Fig. 7. Obstacles of Integrating Models and Code

sult in a satisfactory solution. Instead, it became more and more apparent that
the challenges we experienced cannot be overcome without leaving the tradi-
tional paradigm. While multilevel languages seemed to be much better suited as
a foundation for a convincing solution, implementing multilevel models for being
used at runtime was not possible without painful trade-offs. The solution that
is presented below became possible only through the availability of a multilevel
language engineering facility.

4.1 Foundation: XMF

The idea of recursive language architectures has probably become popular by
the “golden braid” metaphor Hofstadter used for his sophisticated praise of re-
cursion [19]. It is based on the idea that a class can be regarded as an object, too,
which is instantiated from a meta class, which in turn can be seen as an object
instantiated from a higher level class (“everything is an object”). Only very few
programming languages are based on a “golden braid” architecture (e.g., object-
oriented extensions of Lisp, Smalltalk, Ruby). Among these languages, Smalltalk
is especially appealing. It treats classes as objects and is available within pow-
erful development environments. Unfortunately, Smalltalk is not suited for our
purpose, since it does not allow for defining metaclasses above M2. Further-
more, it does not feature metaclasses as classes of many classes, since each class
is assigned exactly one default metaclass only. XMF (“executable Metamodeling
Facility”) is not limited by this constraint ([21], [20]). It is a language execution
engine that features a recursive metamodel, called XCore ([20], p. 43). Every lan-
guage that is specified in XCore can be executed by XMF. XMF allows accessing
and modifying its own specification and its runtime system. Hence, there is no
clear distinction between the language and a respective meta language: XMF is

15

reflective. Furthermore, it includes tools for building compilers for further lan-
guages. Therefore, XMF is a meta programming facility that allows to execute
code written in different languages in the same runtime system. Furthermore,
XMF allows for modifying XCore to satisfy specific requirements of designing
and using DSMLs.

The golden braid architecture in general, XCore in particular are based on
concepts that may be perceived as confusing, since they seem to violate well
known principles of meta-modeling. XCore makes use of a circular relationship:
The central metaclass Class, which is associated with a meta attribute, a meta
operation and a meta association is an instance of itself. At the same time, class
inherits from Object. Hence, every class is an object and can be executed. Object
itself is instantiated from Class. Furthermore, every instance of Class can inherit
from every other instance of Class. For a more detailed description see [20],
especially p. 23 ff. The lean recursive structure of XCore allows for creating an
unbounded number of classification levels but not without effort. As a default,
every class that is instantiated from Class is located on M1. If a metaclass on
a higher level of classification is required, one would specialize a class that was
instantiated from Class from Class at the same time. That would result in lifting
it up to M2, because it would inherit the instantiation capability of the original
metaclass. Instantiating the new class and having the resulting instance inherit
from the original metaclass would result in lifting the instance up to M2 and, as
a consequence, its classification level, which was previously M2 up to M3. Since
the lifting procedure can be repeated indefinitely, language hierarchies with any
number of classification levels can be realized.

4.2 The FMMLx

XMF provides all the flexibility that is required for developing a satisfactory
solution for the implementation of the outlined IT management support tool. In
particular, it allows for a common representation of models and code. Classes,
no matter on what level, are objects at the same time. They can be represented
in the tool on the intended classification level. They can also be instantiated
and executed within the Xmodeler. However, XCore lacks two features that
are useful for modeling and implementing multilevel DSMLs. First, XCore does
not provide direct support for deferred instantiation. Second, from a conceptual
viewpoint it is important to know the classification level of a class, because it
makes a clear difference whether a class is on level n or on level m with n 6= m.
However, classes in XMF are not explicitly assigned to a classification level upon
instantiation. Furthermore, the level of a class may be contingent in the sense
that the level may change during the lifetime of the class. The level of a class at
a particular point in time can be determined dynamically through step-by-step
instantiation only. It is also possible that a class is level-agnostic, which means
that it may be interpreted as being on different levels at the same time. This is
in particular the case for Class the instances of which may reside on any level
above M0 which implies that Class may virtually reside on many levels above M1

simultaneously. While being level-agnostic is a prerequisite for the positioning of

16

classes on multiple classification levels, it is hardly acceptable from a conceptual
point of view, because it would remain unclear what kind of concept the class
represents in the end. Conceptually, contingent classification is questionable, too,
because the classification level is a pivotal aspect of a concept’s semantic.

Against this background, we decided to specify a meta-modeling language,
the FMMLx (“Flexibile and Executable Meta-Modeling Language”) that, like
XCore, enables an unbounded number of classification levels. However, for ev-
ery model created with the FMMLx, each class is assigned a level. In addi-
tion to that, the FMMLx supports intrinsic features. An intrinsic feature is an
attribute, an association, or an operation that is defined on a level n, but is
instantiated only on a level m, with m ¡ n - 1. The FMMLx was created by
extending XCore and by introducing a specific concrete syntax for represent-
ing multilevel models. Figure 8 illustrates the use of intrinsic features and the
concrete syntax of the FMMLx. The level of a class is indicated by the colour
of the background a class name is printed on. To indicate the class, a class is
instantiated from, the name of the metaclass is printed above the classname. In-
trinsic features are marked by the instantiation level that is printed in white on
a black rectangle. Intrinsic associations may have two, possibly different instan-
tiation levels assigned to them. The model in figure 10 includes a corresponding
example: the class HardwareComponent on M4 is associated with the class Lo-
cation on M2. Intrinsic features correspond widely to “deep instantiation” and
“potency” ([1],[22]), except they are applicable not only to attributes, but also
to operations and associations.M4 M3 M2 M1

M

0,*

u

 in charge of

u

manages0

1,*

0,* 1,1

skillLevel : Score

minAvailability : Score

costPerMin : Float

posID : String

Position

averageAvailability (): Duration

0

corpRelevance: Score

 maturity : Score

startTime : Time

stopTime : Time

BusinessProcess

0

averageExecTime(): Duration

0

aveTotalExecTime(): Duration

averagePricePerUnit () : Float

 totalUnitsInStock () : Integer

 averagePricePerBike () : Float

salesPrice : Float

weight : Float

unitsInStock : Integer

serialNo : String

CompoundProduct

0

1

1

1

1

1

2M3

intrinsic association, instantiated

between objects on M0
intrinsic attribute, instantiated in

objects on M0

intrinsic operation, instantiated in

classes on M1

0

^Product^
^Process^ ^OrganisationalUnit^

Fig. 8. FMMLx: Illustration of Concrete Syntax

As illustrated in figure 9, the FMMLx is a monotonic extension of XCore.
On the one hand, that means that existing models of XCore will not be af-
fected by the extension. On the other hand, it allows to preserve the flexibility
provided by contingent levels for those cases where it is needed. The exten-
sion comprises two parts. First, the meta-attributes isInstrinsic and instLevel are
added to Attribute, CompiledOperation, and End. The meta-attributes allow for
defining attributes, operations and associations as intrinsic. Second, a metaclass,
CompiledOperation, is defined that allows to instantiate level-aware classes. For

17

this purpose, the instantiation method new() had to be overriden. It could not,
however, be overriden in Class without side-effects on previous models of XCore.
Therefore, an intermediate class, MetaAdaptor, was introduced. It includes the
attribute level, which enables to assign a level to every class. It is also used to
re-implement new(). A class can be instantiated from MetaClass on any level.
Hence, the level of metaclass itself is contingent. It is, however, possible to de-
fine a level for Class, through the attribute level specified in MetaAdaptor, that
is supposed to be invariant for a certain model.

doc: String
id: String

Doc

body: String
id: String

Constraint

name: String
type: Classifier
isIntrinsic: Boolean
instLevel: Integer
isCore: Boolean

Attribute

0,*

0,*
0,* 0,*

XCore
(simplified)

Interface Layer

Mn

1..1

0,1

0,1

1,1

2,2

1,1

0,*

extended features

0,*

0,*

uinherits from

0,*

3

isIntrinsic: Boolean
instLevel: Integer

 isIntrinsic: Boolean
 instLevel: Integer

MetaClass

allInstances: Set
allAssociations: Set
createAssociation(...): Association

level = n

level: Integer
MetaAdaptor

new(): Object
newAtLevel(l: Integer): Object

FMMLx

name: String
codeBox: Element
traced: Element
isIntrinsic: Boolean
instLevel: Integer
isCore: Boolean

CompiledOperation

context End

@Constraint MultiplicitiesForIntrinsicAssocs
not self.association.isIntrinsic or

self.association.instLevel =
self.MetaClass.level implies
self.collectionMult.oclIsUndefined() = false

end

C1

C1

u

part of

u

part of

u

part of

context Class

@Constraint nonCyclicInheritance
 not self.allParents().includes(self)
end

C2

C2

lowerBound: Integer
upperBound: Integer
hasUpperBound: Boolean

CollectionMult

type: AssocType
Association

0,1

Object

get(name: String): Object
set(name: String, value: Object): Object
copy(): Object
save(fileName: String): Object

name: String
isIntrinsic: Boolean
instLevel: Integer
isNavigable: Boolean
isCore: Boolean

End

2,2
0,*

0,* 1,1

u

part of

0,*

0,*

new()

isAbstract: Boolean
isRole: Boolean

Class

Fig. 9. FMMLx: Metamodel

18

A model editor for the FMMLx was implemented within the Xmodeler.
It allows to create models and modeling languages simultaneously. Every class
that is created above M2 is a language concept that is immediately added to the
palette and can be subsequently used to create new instances (see figure 10).

4.3 A Multilevel IT Modeling Language

To demonstrate the potential of a multilevel approach to solve the problems
discussed in 3.2, an existing language for modeling IT infrastructures (ITML)
[9] was reconstructed in part with the FMMLx. The reconstruction resulted in
a multilevel model the concepts of which qualify as DSMLs on different levels,
where a language on one level refines, and, hence, reuses, concepts defined with a
language on a higher level. Only on M1 one would not speak of language concepts
in the sense that they do not allow for further instantiations. In addition to
enabling multilevel models, it is also possible to extend a model with objects
on M0. In other words, an application system can be integrated with its models
and (meta) meta models at runtime. The highest level of classification used for
the current multilevel version of the ITML is M4. It applies, for example to the
class HardwareComponent that is shown in figure 10.

Each class in the model shown in figure 10 is an object the operations of
which can be executed. The enlarged representation of three selected classes in
figure 11 illustrates this feature. The class Printer on M2 executes two operations
which are defined with its metaclass PeripheralDevice. Whenever the number of
printer models changes, the operation is anewly executed and the resulting value
is presented in the diagram. The Sister200 on M1 stores the values that specify
a particular printer model such as the resolution or the speed. It also executes
operations that collect data from its instances, such as costs or pages printed in
a certain period. Finally, particular printers are represented on M0. The state
of each object, no matter on what level of classification, can be changed inter-
actively. Hence, a diagram turns into a multilevel representation. Furthermore,
the specification of classes can be modified, too. If attributes or operations are
added, they are, as a default, available not only with newly created instances,
but also with already existing ones. However, other policies may be defined.
Deleting attributes will, as a default, still allow access to existing slot values.
This is similar for deleting operations which still allows executing those opera-
tions with existing objects, but of course not with those that were instantiated
after the removal of an operation. Again, different policies for deleting properties
may be defined. Adding and deleting intrinsic features requires more complex
operations.

Apparently, a multilevel object model is at the same time a multilevel soft-
ware system, which could be directly used to store and calculate all data required
for a dashboard system. Users of a dashboard system will probably prefer other
representations than diagrams. This can be accounted for by regarding the model
as a model in a MVC architecture, which is in fact supported by the Xmodeler.
Any kind of visualisation could be defined with one or more corresponding views

19

revenues() : Float

name: String
models = 14
pagePerMinute: Integer
resolution: Integer
salesPrice: Float
 serialNo: String
 partSalesPrice: Float

Printer

pagePerMinute = 40
resolution = 600
salesPrice: 199.00
serialNo: String
partSalesPrice: Float

CPL-844

partSalesPrice = 189.00
serialNo = ps32-3

ps32-3: CPL-844

0
0

M3

M0

name: String
resolution: Integer
pagePerMin: Integer
TWAIN: Boolean

Scanner

noOfMetaTypes: Integer()
 noOfModels: Integer()

 price: Float
 partPrice: Float
 introduced: Date
 installed: Date
 energyCon: Float
 actEnergyCon: Float
 operationCosts: Float

HardwareComponent

M4

mobile: Boolean
 internalMemory: Integer
 persistentMemory: Integer
 additionalIntMem: Integer
 additionalPersMem: Integer
 cpuSpeed: Integer
 WLAN: String

Computer

screenSize: Integer
screenResVert: Integer
screenResHor: Integer
name: String

Laptop
Desktop Server

1
0
1
0
1
0
1

 volume: Integer
 id: string

ServerRoom

0

0

protected: Boolean
tempControl: Boolean
availPower: Integer
emergencyGen: Boolean
 volume: Integer
 id: String

Location

0

0

0

0

requires

1,*0,*

positioned_a

t
1,10,*

0 0

positioned_at

1,10,*

0

compatible

0,* 0,*

11

2

 noOfModels()

 price: Float
....

PeripheralDevice

2

connected_to

0,* 0,*

0 0

M2

M1

mobile: false

noOfModels: 12

M1

M1

1

0

1

1
1

0

automated: Boolean
coreComp: Boolean
 maxDuration
 startTime
 finishTime

BusinessProcess

1
0
0

0,*

0,*

requires 1

positioned_at

compatible

connected_to

0

0

1

1,1

1,*

0,*

0

1 1

0

Fig. 10. Screenshot of Xmodeler with Excerpt of Multilevel ITML

that would support user-specific interfaces. Figure 12 shows a GUI of a dash-
board system that represents a view of the multilevel model in figure 10.

5 Conclusions and Future Work

IT management is an example out of many domains that are characterized by
the need for an elaborate technical terminology in order to support advanced
decision making. In addition to that, it also requires the management of par-
ticular resources. While the use of DSMLs is promising to model domains of
this kind, traditional language architectures with one classification level only
are confronted with serious problems, both with respect to the design of proper
conceptual models and the realization of corresponding software systems. In this
paper it was demonstrated that a multilevel language architecture that integrates

20

Fig. 11. Enlarged Excerpt of Multilevel Model

a (meta-) modeling environment with a (meta-) programming facility is suited
to effectively address those problems. It does not only enable more expressive
models that promote reuse and flexibility, it also provides the foundation of a
new class of application systems that are integrated with conceptual models of
themselves at runtime. Such self-referential systems are suited to empower users,
because they do not only provide users on demand with information about the
conceptual foundation of the system they work with, but may also enable users
to modify the system by editing those parts of the models they are authorized
to change.

To further promote the field of multilevel modeling and multilevel software
construction, it seems useful to develop languages, models and applications for
further domains, and compare the results to traditional approaches (for a further

21

Fig. 12. Illustration of Dashboard

analysis of this kind see [23]). That does not only contribute to demonstrating
the practical benefits of multilevel approaches, it also leads to new requirements
for foundational meta-languages and language engineering facilities. The integra-
tion of an application system with multiple meta levels increases its flexibility
substantially. At the same time, it adds complexity and raises specific challenges
to integrity. Therefore, more research is needed on specifying and ensuring in-
tegrity constraints in multilevel systems. The design of multilevel domain models
is in part still unknown territory. So far, there is only little methodical support
([24] and, in part, [25]). Therefore, future research needs to aim at the further de-
velopment of specific design and analysis methods. So far, research on multilevel
modeling was mainly restricted to static abstractions. A multilevel approach to
process modeling may be suited to reduce the remarkable lack of abstraction
and reuse in current process modeling languages [26].

References

1. Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain
models. Software & Systems Modeling, 7(3):345–359, 2008.

2. Colin Atkinson and Thomas Kühne. The essense of multilevel metamodeling.
In Martin Gorgolla and Cris Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, volume 2185 of Lecture Notes
in Computer Science, pages 19–33. Springer, Berlin and London, New York, 2001.

3. Manfred A. Jeusfeld. Metamodeling and method engineering with conceptbase. In
Manfred A. Jeusfeld, Matthias Jarke, and John Mylopoulos, editors, Metamodeling
for Method Engineering, pages 89–168. MIT Press, Cambridge, 2009.

22

4. Thomas Kühne and Daniel Schreiber. Can programming be liberated from the
two-level style: multi-level programming with deepjava. In Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele, editors, Proceedings
of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications (OOPSLA ’07), volume 42,10 of ACM SIGPLAN notices,
pages 229–244, New York, 2007. ACM Press.

5. Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A flexible infrastructure
for multilevel language engineering. IEEE Trans. Software Eng., 35(6):742–755,
2009.

6. Bernd Neumayr, Katharina Grün, and Michael Schrefl. Multi-level domain model-
ing with m-objects and m-relationships. In Markus Kirchberg and Sebastian Link,
editors, Conceptual Modelling 2009, pages 107–116. Australian Computer Society,
2009.

7. Thomas S. Kuhn. The Structure of Scientific Revolutions, volume 159 of Phoenix
books. Univ. of Chicago Press u.a, Chicago, 1964.

8. DMTF. Common information model (cim) metamodel.
9. Lutz Kirchner. Eine Methode zur Unterstützung des IT-Managements im Rahmen

der Unternehmensmodellierung. Logos, Berlin, 2008.
10. Frederik Ahlemann. Strategic enterprise architecture management: Challenges best

practices and future developments. Management for professionals. Springer, Berlin,
2012.

11. Stephan Aier, Stephan Kurpjuweit, Jan Saat, and Robert Winter. Enterprise
architecture design as an engineering discipline. AIS Transactions on Enterprise
Systems, 1(1):36–43, 2009.

12. Sabine Buckl, Florian Matthes, Sascha Roth, Christopher Schulz, and ChristianM
Schweda. A conceptual framework for enterprise architecture design. In Erik
Proper, Marc M. Lankhorst, Marten Schönherr, Joseph Barjis, and Sietse Over-
beek, editors, Trends in Enterprise Architecture Research, volume 70 of Lecture
Notes in Business Information Processing, pages 44–56. Springer, Berlin and Hei-
delberg, New York, 2010.

13. The Open Group. Archimate 2.1 Specification. Van Haren Publishing, Zaltbommel,
2012.

14. Ulrich Frank, David Heise, Heiko Kattenstroth, Donald Ferguson, Ethan Hadar,
and Marvin Waschke. Itml: A domain-specific modeling language for supporting
business driven it management. In Matti Rossi, Jeff Gray, Jonathan Sprinkle,
and Juha-Pekka Tolvanen, editors, Proceedings of the 9th OOPSLA workshop on
domain-specific modeling (DSM’09), Helsinki, 2009. Helsinki Business School.

15. Ulrich Frank, David Heise, and Heiko Kattenstroth. Use of a domain specific mod-
eling language for realizing versatile dashboards. In Juha-Pekka Tolvanen, Matti
Rossi, Jeff Gray, and Jonathan Sprinkle, editors, Proceedings of the 9th OOPSLA
Workshop on Domain-Specific Modeling (DSM’09), Helsinki, 2009. Helsinki Busi-
ness School.

16. Ulrich Frank. Outline of a method for designing domain-specific modelling lan-
guages.

17. Ulrich Frank. The memo meta modelling language (mml) and language architec-
ture: 2nd edition.

18. Ulrich Frank. Multi-perspective enterprise modeling: Foundational concepts,
prospects and future research challenges. Software and Systems Modeling, 2013.

19. Douglas R. Hofstadter. Godel, Escher, Bach: An eternal golden braid. Basic Books,
New York, 1979.

23

20. Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling: A Foun-
dation for Language Driven Development. Ceteva, 2 edition, 2008.

21. Tony Clark and James Willans. Software language engineering with xmf and xmod-
eler. In Marjan Mernik, editor, Formal and Practical Aspects of Domain-Specific
Languages, pages 311–340. Information Science Reference, 2012.

22. Bernd Neumayr, Manfred A. Jeusfeld, Michael Schrefl, and Christoph Schütz. Dual
deep instantiation and its conceptbase implementation. In Matthias Jarke, John
Mylopoulos, Christoph Quix, Colette Rolland, Yannis Manolopoulos, Haralambos
Mouratidis, and Jennifer Horkoff, editors, Advanced Information Systems Engi-
neering: 26th International Conference, CAiSE 2014, Thessaloniki, Greece, June
16-20, 2014. Proceedings, pages 503–517. Springer International Publishing, Cham,
2014.

23. Alessandro Rossini, Juan De Lara, Esther Guerra, and Nikolay Nikolov. A compar-
ison of two-level and multi-level modelling for cloud-based applications. In Gabriele
Taentzer and Francis Bordeleau, editors, Modelling Foundations and Applications:
11th European Conference, ECMFA 2015, pages 18–32. Springer International Pub-
lishing, Cham, 2015.

24. Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

25. Ulrich Frank. Domain-specific modeling languages - requirements analysis and
design guidelines. In Iris Reinhartz-Berger, Aron Sturm, Tony Clark, Yair Wand,
Sholom Cohen, and Jorn Bettin, editors, Domain Engineering: Product Lines, Con-
ceptual Models, and Languages, pages 133–157. Springer, 2013.

26. Ulrich Frank. Specialisation in business process modelling: Motivation, approaches
and limitations.

24

