
ICB-RESEARCH REPORT

ICB
lnstitut fur lnformatik und
Wirtschaftsinformatik

Ulrich Frank, Monika Kaczmarek-Heß, Sybren de Kinderen

ICB-Research Report
No. 72

December 2021

72IT Infrastructure Modeling Language
(ITML): A DSML for Supporting IT
Management

Die Forschungsberichte des Instituts für Infor- The ICB Research Reports comprise preliminary
matik und Wirtschaftsinformatik stellen vorläufi- results, which will usually be revised for subse-
ge Ergebnisse dar, die i. d. R. noch für spätere Ver- quent publications. Critical comments would be
öffentlichungen überarbeitet werden. Daher sind appreciated by the authors.
die Autoren für kritische Hinweise dankbar.

Die durch das Urheberrecht begründeten Rechte, All rights reserved. No part of this report may be
insbesondere der Übersetzung, des Nachdruckes, reproduced by any means, or translated.
des Vortrags, der Vervielfältigung, der Weit-
ergabe, der Veränderung und der Entnahme
von Abbildungen und Tabellen – auch bei
auszugsweiser Verwertung – bleiben vorbehal-
ten.

Authors’ Address: ICB Research Reports
Edited by:

Ulrich Frank, Monika Kaczmarek-Heß, Prof. Dr. Frederik Ahlemann

Sybren de Kinderen Prof. Dr. Fabian Beck

University of Duisburg-Essen Prof. Dr. Torsten Brinda

Institute for Computer Science Prof. Dr. Peter Chamoni

and Business Informatics Prof. Dr. Lucas Davi

Universitätsstr. 9, 45141 Essen, Germany Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

{ulrich.frank|monika.kaczmarek-hess| Prof. Dr. Ulrich Frank

sybren.dekinderen}@uni-due.de Prof. Dr. Michael Goedicke

Prof. Dr. Volker Gruhn

Prof. Dr. Tobias Kollmann

Prof. Dr. Pedro José Marrón

Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb

Prof. Dr. Stefan Schneegaß

Prof. Dr. Reinhard Schütte

Prof. Dr. Stefan Stieglitz

Contact:

Institute for Computer Science and

Business Information Systems (ICB)

University of Duisburg-Essen

Universitätsstr. 9

45141 Essen – Germany

Tel.: +49 201-1834041

Fax: +49 201-1834011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

DOI 10.17185/duepublico/75252

Abstract

In this research report, we present a new version of IT Modeling Language (ITML). It is
integrated with the family of Domain-Specific Modeling Languages (DSMLs) that are part
of Multi-Perspective Enterprise Modeling (MEMO). The design of the language followed a
proven method. It provides for analysing requirements based on the analysis of possible use
scenarios. The ITML was specified with the meta modeling language MEMO MML. Due to the
considerable size of the meta model, its presentation is split into several partial meta models,
which are described at a level of detail that is required for the implementation of the language
within a modeling tool. The presentation of the meta model is supplemented by discussions of
design conflicts and related decisions. In addition to the abstract syntax and semantics, which
are represented by the meta model, we also propose a concrete syntax, which was designed
with the support of a graphic designer. Finally, we also provide a short discussion of principal
limitations of conventional meta modeling as well as an outlook on our future research.

Keywords: IT management, enterprise modeling, IT infrastructure, ITML, MEMO, multi-level
modeling.

i

Contents

1 Introduction 1

2 Main Analysis Scenarios 3
2.1 Analysis of IT Landscape Elements . 3

2.1.1 Identification of Existing IT Landscape Elements 4
2.1.2 Analysis of Main Characteristics of Existing IT Infrastructure Elements . 6
2.1.3 Analysis of Dependencies Among IT Landscape Elements 7

2.2 IT-centric Analysis . 8
2.2.1 Security Analysis . 8
2.2.2 Maintainability . 9
2.2.3 Portability Analysis . 10
2.2.4 Performance Analysis . 11
2.2.5 Availability Analysis . 12
2.2.6 Analysis of Vendors and Existing Relationships 12

2.3 Integration Analysis . 13
2.4 Integrated IT Infrastructure and Action System Analysis 16

2.4.1 Analysis of IT-Business Alignment . 16
2.4.2 Analysis of Organizational Assignment 17

3 Language Design: Abstract Syntax and Semantics 19
3.1 Main IT Landscape Elements . 21
3.2 Selected IT-centric Analysis . 40
3.3 Integration: Technologies, Languages, and Conceptual Integration 41
3.4 IT Architecture . 44
3.5 Integrated IT Infrastructure and Action System Analysis 47
3.6 Auxiliary Types . 51
3.7 Constraints . 52
3.8 Requirements and Their Fulfillment . 56

4 Language Design: Concrete Syntax and ITML Diagram Types 60
4.1 Concrete Syntax . 60
4.2 Selected ITML Diagram Types . 62

iii

4.2.1 IT Infrastructure Diagram . 62
4.2.2 Topic Diagram and Corresponding Analysis 67
4.2.3 Architecture Diagram . 68

4.3 Integration of ITML Diagram Types With Other MEMO Diagram Types 70
4.4 Selected Design Principles . 71

5 Conclusions 77

A Concrete Syntax – Concepts 81

Bibliography 86

iv

IT Modeling Language (ITML): A DSML for Supporting IT Management

1 Introduction

IT management incorporates a variety of topics that range from the development and operation
of enterprise information systems, to the generation of value through the use of IT (Hanschke
2010; Luftman and Bullen 2004; Mangiapane and Buechler 2015). IT management encompasses
planning, controlling and organizing aspects involving IT infrastructure (Hanschke 2010). In
turn, an IT infrastructure encompasses (1) different kinds of IT artifacts such as, e.g., computa-
tional hardware, software, data, networks and data center facilities, (2) various dependencies
among those artifacts, as well as (3) actors designing or maintaining the IT infrastructure, cf.
(Duncan 1995; Hanschke 2010; Laan 2017; Nyrhinen 2006). However, what exactly is to be
perceived as part of IT infrastructure, and at which level of granularity, depends to a large
extent on stakeholders involved and/or IT management analyses targeted, cf. (Kaczmarek-Heß
and Kinderen 2017; Laan 2017).

In the era of digital transformation, elements of an organization action system, such as business
processes, business goals, strategies, or organizational structures, are heavily affected by the
adoption of digital technologies (Parviainen et al. 2017). Acknowledging the importance of
IT infrastructure management for an enterprise as a whole, different modeling languages in
the field of enterprise modeling have been proposed, among others, to: (1) promote better
understanding of an enterprise and the role IT plays in it, (2) creating a common language
between business and IT, thus making explicit links between the action system (e.g., processes,
goals) and IT artifacts (e.g., information systems, IT services), and thus, explicitly showing the
complex inter-dependencies that exist among and within these domains, as well as (3) provid-
ing support for processes that are considered to be at the core of IT management and which aim
at documenting and analysing IT landscape, as well as at governing and controlling its evolu-
tion1. Examples of such approaches are, among others, ArchiMate (The Open Group 2012),
Architecture of Integrated Information Systems (ARIS) (Scheer 2001), and Multi-Perspective
Enterprise Modeling (MEMO) (Frank 2014b), with an IT Modeling Language called ITML.

Although, conceptual overlaps between these IT modeling languages can be assumed, as all of
them are oriented towards developing structured descriptions of IT infrastructure, the existing
modeling approaches differ substantially when it comes to the modeling foundations and
assumptions, domain coverage, as well as semantic richness of offered concepts, and thus, also
the set of scenarios supported, cf. (Bock, Kaczmarek, et al. 2014; Kinderen and Kaczmarek-Heß

1For overview of IT management processes as such see, e.g., (Hanschke 2010)

1

1 Introduction

2018). In this research report, we focus on the ITML being part of a comprehensive method
for multi-perspective enterprise modeling (MEMO) (Frank 2014b). MEMO includes various
other domain-specific modeling languages (DSMLs), e.g., languages for business processes,
resources, or goal modeling. Being part of MEMO, ITML models can be enhanced with the
relevant aspects of an enterprise to allow for analysis in an IT-business alignment context, and
foster communication between stakeholders with different professional backgrounds.

The ITML as proposed by Frank et al. (2009) and further extended by Heise (2013), and
Kinderen and Kaczmarek-Heß (2018), offers the basic concepts reconstructed from the domain
of discourse, e.g., Software, Computer, Server, Peripheral Device, Service, Physical Medium
or Application System. However, the concepts offered do not allow to support all analysis
scenarios that are currently of interest, as well as, considering the current developments, do
not account for all relevant aspects and technologies (e.g., containers, distributed ledger). In
this research report, driven by the need to further extend the set of analysis scenarios that
should be supported, we present a new version of the ITML. Here we focus on the definition of
analysis scenarios, which should be supported by the ITML, and associated conceptualizations
in terms of its abstract syntax created with the MEMO Meta Modeling Language (MEMO
MML) (Frank 2011), semantics, as well as the concrete syntax and associated diagram types.

Creating a domain-specific modeling language is a non-trivial endeavor, cf. (Frank 2013),
involving not only challenges regarding the reconstruction of domain concepts, but also
challenges surrounding meta modeling specifically, such as deciding what concepts are to be
part of the language specification, and what concepts are to be part of the language application.
Therefore, to support the DSML design process, we follow the DSML design method as
proposed by Frank (2013). This method, which already has proven useful in other projects
(e.g., Goldstein and Frank 2016; Kinderen and Kaczmarek-Heß 2018; Overbeek, Frank, and
Köhling 2015), provides a macro-process for language design, as well as corresponding roles
and guidelines. It consists of 7 steps: starting from the clarification of scope and purpose,
through the analysis of requirements, specification of language (abstract syntax and semantics),
provision of graphical notation (concrete syntax) and the optional development of a modeling
tool. The process ends with the evaluation and refinement of the developed language, and
(potentially) the corresponding software tool. As already mentioned, in this report we discuss
analysis scenarios of interest, requirements, as well as the design of a language.

The research report is structured as follows. First, we provide an overview of typical IT infras-
tructure analyses, and derive a set of high-level requirements towards a language. Then, the
abstract syntax, language semantics as well as selected design decisions are shortly discussed.
Next, a short overview of the concrete syntax follows, complemented by a short presentation
of selected diagram types. Finally, in the conclusions an outlook is provided on challenges
associated with modeling IT infrastructure with conventional meta modeling, as well as on
promises of the multi-level paradigm.

2

IT Modeling Language (ITML): A DSML for Supporting IT Management

2 Main Analysis Scenarios

The main goal of the IT Modeling Language (ITML) is to provide support for the needs of
IT management, cf. (Hanschke 2010; Luftman and Bullen 2004; Mangiapane and Buechler
2015). As the ITML’s design is driven by use scenarios, which we consider being central to
the development of modeling languages (Frank 2013), in this chapter, we discuss the main
use scenarios for the ITML. We do this in terms of both (i) analyses of the IT infrastructure
itself that should be supported by a standalone IT Infrastructure modeling language, and
(ii) analyses that cut across the IT infrastructure and other organizational perspectives (such
as business processes, organizational goals, organizational structure, or otherwise) that are of
interest, if an IT modeling language is part of an enterprise modeling approach.

The scenarios discussed in this chapter are accompanied by the formulation of a set of re-
quirements. These requirements, in turn, will inform the design of the ITML, as discussed in
Chapter 3. In our discussion we also briefly touch upon the need for a modeling language and
analysis of models in order to fulfill the identified requirements.

2.1 Analysis of IT Landscape Elements

The analysis of elements of an IT landscape and their characteristics is the basic scenario
being of interest for IT management (Hanschke 2010; Luftman and Bullen 2004; Mangiapane
and Buechler 2015). Namely, based on the analysis of the created diagram, it should be
possible to answer questions regarding (1) IT infrastructure elements, (2) their properties and
functionalities they provide, and finally, (3) relationships and dependencies between those
elements. Please note that we are interested in both information applicable to types of IT
artifacts, e.g., properties of an operating system, or of some type of hardware platform; as
well as information applicable to some specific installations (e.g., specific installation of some
specific version of an operating system on some specific hardware platform in some specific
location) and exemplars (e.g., configuration and properties of some specific exemplar of some
model of printer). Thus, we are interested in both information applicable to the type level, as
well as the instance level. This leads us to the following requirement (R).

3

2 Main Analysis Scenarios

R1: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of IT infrastructure elements, their properties and dependencies
between different elements, both on the type-level as well as on the instance-level.

It is noteworthy that in emphasizing the modeling of, both, type and instance level information,
the ITML should build on a language architecture that is equipped with features allowing to
differentiate between these two types of information.

2.1.1 Identification of Existing IT Landscape Elements

Purpose: Analysis of IT landscape elements focuses on answering questions regarding elements
belonging to IT infrastructure and their role.

From a technical perspective, the IT infrastructure is used to collect, store and process data. This
requires hardware that provides computing power, as well as temporary and persistent storage.
It also includes various devices for recording and providing data, as well as infrastructure
allowing for exchange of messages between components. Software is required to make these
basic hardware functions accessible in a safe and convenient way. Basic software, such as
an operating system, serves to enable an abstraction from the resources provided with the
hardware (storage space, processor capacity, etc.). This not only reduces the dependency
on specific hardware, but also creates convenient access to the hardware. The separation
between hardware and software is fluid. Functions that are provided by software can also
be implemented using dedicated hardware, for example to achieve performance advantages.
Conversely, hardware can be simulated by software. The software that is used to manage the
hardware resources, as well as the data on which it operates, also represent resources that are
used by other software systems.

IT infrastructures usually encompass several computers connected via a network and other
devices. Therefore, functionalities are required that support distribution of resources, as well
as dealing with heterogeneity. Here, heterogeneity primarily refers to different processor
architectures, different basic software and different programming languages. A distributed
system consists of several computers that are connected via a network with one another. The
resources of a distributed system are to be managed in a similar way to the resources of a single
computer. Corresponding functionalities include administration and access to distributed
storage systems and peripheral devices, loading, executing and scheduling programs, and
protecting distributed resources from unauthorized access. Since the resources of a distributed
IT infrastructure are sometimes used by several users simultaneously (“multi-user operation”),
functions are required that synchronize concurrent access to resources in such a way that the
integrity of the accesses is preserved. For this, the secure execution of transactions must be
supported.

4

IT Modeling Language (ITML): A DSML for Supporting IT Management

Exemplary questions of interest:

∙ Which types of hardware platform are used?

∙ What printers are there?

∙ Do we have any application server running?

∙ Which type of an enterprise system do we use?

∙ How many licenses for some operating system are available?

∙ What IT-services are offered?

∙ What functionalities are offered by IT landscape elements?

∙ What application programming interfaces are offered?

∙ Do we employ a distributed ledger technology?

∙ Do we employ inductive systems, e.g., inductive reasoners1?

∙ What networks are there?

∙ Where are our servers located?

Although many of the exemplary questions formulated may seem to be easily answered by
getting information, e.g., from a configuration management database, as subsequent sections
show, please note that the analysis scenarios that we target at are much more complex in
nature and require not only looking at some selected properties of IT artifacts, but defining
and analyzing complex dependencies among them, processing acquired information, as well
as communicating it effectively. To this aim application of conceptual models created using a
dedicated domain-specific modeling language is particularly suitable.

Key concepts: various types of hardware as well as software, interface, network, network access,
data storage, location

Requirements:

R2: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of hardware platforms and associated concepts.

R3: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of software artifacts and related concepts.

1In recent years, various systems that make use of inductive approaches received growing attention. They
comprise statistics software, e.g., for data analysis, or “machine learning” approaches. We use the term
‘inductive system’ to name this class of software.

5

2 Main Analysis Scenarios

R4: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of IT services.

R5: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of hardware devices (e.g., peripheral devices).

R6: The IT infrastructure modeling language should provide differentiated concepts support-
ing comprehensive modeling of other elements of IT infrastructure, such as network or data
storage.

2.1.2 Analysis of Main Characteristics of Existing IT Infrastructure Elements

Purpose: The relevant characteristics to be covered, are partly determined by the analysis
scenarios of interest to IT management, for a partial overview, cf. (Bucher et al. 2006; Hanschke
2010; Niemann 2005). These scenarios range from relatively straightforward, such as the life-
cycle stage of an IT infrastructure element, to more comprehensive ones. For scoping purposes
we focus here on relatively straightforward analysis questions, whereas more comprehensive
ones are covered in the IT-centric analysis described in Section 2.2.

Exemplary questions of interest:

∙ What functions are delivered by some software artifact?

∙ Which implementation language was used to create some software artifact?

∙ What is the size of the external storage, e.g., external hard-drive used?

∙ What is the printing speed of a given printer?

∙ What is the type of the software licenses in use?

∙ Which programming languages, of which we are explicitly aware, are used in-house?

∙ What is the rationale for using a particular distributed ledger technology?

∙ What is the rationale for using a particular inductive system?

∙ Which interface an application is using? How is the application and/or the interface
implemented in technical terms?

∙ What type of middleware are we using in our architecture?

∙ What is the life-cycle stage of a given IT artifact?

∙ What data and on what topic is exchanged via existing interfaces?

6

IT Modeling Language (ITML): A DSML for Supporting IT Management

∙ How is data used by some software applications, meaning: does the application read or
write data?

∙ What is the assessment of application software in terms of user satisfaction?

Key concepts: Properties of software and hardware artifacts, related concepts such as interface,
programming language, communication protocol, transport protocol, data, data format, etc.

Requirements:

R7: The IT infrastructure modeling language should express properties of different IT infras-
tructure concepts as they are part of the professional IT infrastructure discourse. For example,
this includes properties of a hardware platform or a software application, as described under
the identification of IT infrastructure elements.

2.1.3 Analysis of Dependencies Among IT Landscape Elements

Purpose: The main focus is to analyze dependencies and relationships between existing IT
infrastructure elements. Also, among others, analyses on location and deployment options
are here in focus. In a most trivial case, we can deploy the software on premises or in the
cloud. Please note that each option has benefits and drawbacks. E.g., on the one hand, cloud
deployment allows to abstract from the complexity of managing the physical infrastructure and
offer a flexible, cost-effective business model. However, on the other hand, cloud deployment
comes at the cost of losing control over the physical IT infrastructure. Finally, deployment
can take the shape of so-called containers, which are said to provide everything required
to run a program, cf. (Ernst, Bermbach, and Tai 2016; Newman 2015; Sultan, Ahmad, and
Dimitriou 2019; Syed and Fernandez 2018), such as libraries, APIs, etc. Containers are especially
relevant, if single applications are designed as being composed of many loosely coupled
and independently deployable components or services, and it is of interest to, e.g., make
deployment dependencies explicit (Ernst, Bermbach, and Tai 2016; Newman 2015; Sultan,
Ahmad, and Dimitriou 2019; Syed and Fernandez 2018).

Exemplary questions of interest:

∙ What are the dependencies among existing software artifacts?

∙ Which software communicates with which software and what are the characteristics of
such a communication (e.g., protocol used, data exchanged)?

∙ Which web server is part of a middleware solution?

∙ Which software is wrapped by a component?

∙ Which software artifacts run on which platforms?

7

2 Main Analysis Scenarios

∙ Where are different (hardware) platforms physically located?

∙ Where is application software deployed/hosted? Is it running on our premises or in the
cloud environment?

∙ Can some IT artifact also be used with other hardware and/or within other software
environments?

∙ What IT services are offered by an application?

∙ Which IT services are used by some application?

∙ Which interfaces are used by IT services?

Key concepts: IT service, software and its specializations, hardware and its specializations, runs
on, executable on, requires, provides, uses

Requirements:

R8: The IT infrastructure modeling language should allow to model dependencies among
various elements of the IT landscape (e.g., between software artifacts, software and platforms,
or software artifacts and IT services), as indicated by the questions posed above.

2.2 IT-centric Analysis

In the following, we discuss specific IT-centric analysis scenarios focusing on qualitative
features of IT artefacts. Although there is no commonly accepted notion of “quality” of IT
artefacts, to organize our discussion according to a common denominator, we use the well-
established Systems and software Quality Requirements and Evaluation (SQuaRE) model (ISO
2011).

2.2.1 Security Analysis

Purpose: while security is important to IT management, it is still unclear how to suitably assess
the level of security in a company, since the definition of the topic is ambiguous (Goldstein and
Frank 2016; Johansson and Johnson 2005). We assume that analysis of security in its simplest
form focuses on three elements: authorization, authentication, and confidentiality. ITML
should allow to conduct a basic analysis of security related aspects for those three elements.

Exemplary questions of interest:

∙ Is the network protected by a firewall?

8

IT Modeling Language (ITML): A DSML for Supporting IT Management

∙ Is the transport protocol used secure?

∙ Is the exchanged data encrypted? What kind of encryption is used?

∙ Is our server storing the sensitive data in the protected network?

∙ Are all of the desktops and notebooks protected by a personal firewall?

∙ Is the exchange of sensitive data protected?

∙ Which process types and which organizational units are accessing which data? In which
mode (read or write)?

Key concepts: Properties of software and hardware artifacts, supporting concepts such as
firewall, transport protocol, encryption method

Requirements:

R9: The IT infrastructure modeling language should account for supporting basic analysis
related to authorization, authentication and confidentiality. To this aim relevant properties of
IT artifacts (e.g., authorization type applied), their interactions (e.g., transport protocols), as
well as dedicated concepts (e.g., firewall) and their configuration, should be accounted for.

2.2.2 Maintainability

Purpose: Maintainability “is the capability of the software product to be modified” (ISO 2011) or
“the ease with which it can be modified to changes in the environment, requirements or func-
tional specification” (Bengtsson et al. 2004). Maintainability is considered to be important for
IT infrastructure in an organization. The evaluation of maintainability may deliver important
insights into IT infrastructure changeability, which facilitates the choice of more appropriate
versions of architecture, or may reveal its flaws before commencing the development. In a
general sense modifications to software systems can include corrections, improvements or
adaptation of the software, but they also include such activities as installation of updates and
upgrades.

Maintainability analysis requires architectural information that allow to assess the effort
required to conduct a change (modification), but also to analyze the impact of the change (i.e.,
identifying the architectural elements, directly and indirectly, affected by a change). Note here
that we focus on estimation of “maintainability”, i.e., we assess any indicators related to it (such
as aforementioned effort, or impact) as it is may be estimated by an analyst/practitioner. A
fully-fledged maintainability analysis in turn, requires information that cannot be delivered by
ITML diagrams alone.

9

2 Main Analysis Scenarios

Exemplary questions of interest:

∙ Is the source code available?

∙ Is documentation available?

∙ What is the current version of the system and when was the last update installed?

∙ What language has been used for implementation purposes?

∙ What are relationships with the other elements of IT infrastructure, e.g., what other
IT elements are using the considered IT artifact? What IT elements are used by the
considered IT artifact?

∙ What is the estimated effort of conducting a modification of a piece of software?

Key concepts: properties of concept Software such as estimated effort, source code availability,
documentation availability; relationships between components being part of a software artifact,
implementation language used

Requirements:

R10: The IT infrastructure modeling language should account for supporting basic analysis of
maintainability of the IT infrastructure. Thus, it should account for architectural information
as well as dependencies among elements of IT landscape allowing to analyze the impact of a
modification.

2.2.3 Portability Analysis

Portability, according to ISO, encompasses adaptability, installability and replaceability, and
may be defined as “degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational or usage
environment to another“ (ISO 2011). Please note that at the core, the assessment of portability
requires conducting analysis of existing (constraining) dependencies among IT artifacts, as well
as their constraining characteristics (e.g., supported data formats, supported system versions).
Please also note that the analysis of replaceability may reduce lock-in risk.

Exemplary questions of interest:

∙ Which types of hardware and software environment is a given software artifact suited
for?

∙ What standards, e.g., when it comes to standardized file formats, are supported by a
given software artifact?

10

IT Modeling Language (ITML): A DSML for Supporting IT Management

∙ Does the new version of the system has any new dependencies/requirements compared
to the previous one?

∙ What are the constraining characteristics of some IT artifact, e.g., a maximal number of
users, maximal data storage supported?

Key concepts: a set of dedicated relationships: runs on, suited for, requires, a set of dedicated
attributes: scalability, standards followed, etc.

Requirements:

R11: The IT infrastructure modeling language should account for additional relationships
reflecting various dependencies between IT artifacts supporting a portability analysis.

R12: The IT infrastructure modeling language should account for characteristics of IT artifacts
supporting portability analysis (e.g., constraining characteristics, usage of standards).

2.2.4 Performance Analysis

Purpose: Performance analysis focuses on what is the desired, average, as well as actual
performance of various IT infrastructure elements, with the aim to answer a question, whether
the performance offered is satisfactory from a business perspective.

Please note that, like security and maintainability related analysis, in our analysis questions
on performance we focus on a simplified notion of estimated performance only. The reason
for doing so is similar to that discussed previously. On the one hand, performance related
scenarios are important, especially when considering IT in conjunction with the organizational
action system using it (e.g., a business process “insurance claim processing” relying on the
throughput of a “claim processing” software application). On the other hand, an in-depth
performance analysis is a complicated issue, which requires dedicated languages, such as the
Architectural Analysis and Design Language (AADL), which lists performance analysis as one
of its key analysis of the quality of performance-critical systems (Feiler, Gluch, and Hudak
2006, p. 5). Such dedicated performance analyses however, are out of our scope.

Exemplary questions of interest:

∙ What is the estimated average performance of some type of an IT landscape element
(e.g., a hardware platform type, software artifact type)?,

∙ What is the actual performance of some specific IT landscape element?

Key concepts: estimated performance of software and hardware artifacts.

11

2 Main Analysis Scenarios

Requirements:

R13: The IT infrastructure modeling language should express estimated performance of
IT landscape elements, whereby a specification of performance depends on the type of IT
landscape element.

2.2.5 Availability Analysis

ISO (2011) considers availability as part of artifact reliability. In the following, we focus on the
technical availability only.

Purpose: The availability analysis focuses on such basic questions like “what is the average
and actual availability of various elements of IT infrastructure”? Similar to indicators for our
analyses discussed earlier, being aware of the complexity of the availability analysis and its
operationalization for different IT artifacts2, we focus on the simplified notion of estimated
availability only.

Exemplary questions of interest:

∙ What is the estimated average availability of some type of an IT landscape element (e.g.,
a hardware platform type)?

∙ What is the actual availability of some specific IT landscape element (e.g., an instance of
hardware platform)?

Key concepts: Properties of software and hardware artifacts.

Requirements:

R14: The IT infrastructure modeling language should express (technical) availability character-
istics of IT landscape elements.

2.2.6 Analysis of Vendors and Existing Relationships

Purpose: It is important to have an overview of all vendors and what they deliver to our
organization with an eye to, e.g., vendor lock-in. Related analyses entail the identification of
vendors of all IT landscape elements, analysis of existing contracts and support agreements,
etc. It should be possible to assess vendor risks, as well as vendor power.

2Consider the difference in availability of storage devices, network storage, and a network generally. For storage
devices, availability is influenced by the use of a (hot swappable) array of disks, whereas for network storage,
the used data replication mechanism counts. Availability of a network is different still, since it is substantially
influenced by the underlying network topology.

12

IT Modeling Language (ITML): A DSML for Supporting IT Management

Exemplary questions of interest:

∙ With how many different vendors are we collaborating?

∙ To what extent are we dependent on some vendor?

∙ How critical to our business are products and solutions offered by some vendor? What
risks can be identified, in case the vendor will get out of the market, or stop offering
product support?

Key concepts: vendor and its characteristics, contract, agreement, provided IT landscape ele-
ments

Requirements:

R15: The IT infrastructure modeling language should provide concepts delivering information
required for the needs of conducting a basic vendor analysis.

2.3 Integration Analysis

Integration is a pivotal concern when it comes to the analysis of IT infrastructures. The benefits
of integration are significant, cf. also (Kattenstroth, Frank, and Heise 2013; Luftman, Zadeh,
et al. 2012). In this section we focus specifically on two aspects (1) data integration and
(2) functional integration. As an excursus, we also briefly discuss selected conflicts.

Data integration
Purpose: Integration requires the ability of two or more systems to exchange information,
and use the information exchanged. Based on the modeled IT landscape one should be able
to conduct a manual analysis in order to assess the level of integration, by focusing on the
communication between various software artifacts and their properties. This includes types of
data objects exchanged, exchanged file format document used, information covered, as well as
characteristics of the software artifacts (e.g., implementation languages). Information should be
also provided regarding whether, e.g., middleware, is necessary to enable the communication
between different artifacts.

Note here again that “integration” is a complicated issue, touching not only on technical
issues like the used implementation language, but also on many topics that are intricate and
contingent in their own right, like formal and material semantics, or the notions of data and
information. The information provided by the ITML diagrams should support manual analysis
and provide some hints regarding additional integration possibilities.

13

2 Main Analysis Scenarios

Exemplary questions of interest:

∙ Which software artifacts communicate and what are the characteristics of this communi-
cation?

∙ What is the type of data being exchanged, e.g., in terms of “primitive” data types (such
as byte, string, or boolean), data structures, and classes?

∙ Which data structures are used in the communication?

∙ Which middleware types are used in the organization, and what other elements they
include?

∙ What data is read and written by various software artifacts? Is there any hint to investi-
gate the potential for further integration?

∙ What data is covered by existing databases? What software artifacts use specific
databases?

∙ Are two application systems using the same or similar data? Do they share a common
database/repository?

∙ Are two applications based on the same data model?

∙ Are two applications using databases having the same schema?

Key concepts: data, middleware, implementation language, file format, wraps, has connector to,
accesses data, reads data, writes data, data storage

Requirements:

R16: The IT infrastructure modeling language should explicitly account for data and its formats,
as well as implementation languages of different IT infrastructure elements.

R17: The IT infrastructure modeling language should distinguish different types of middleware
and corresponding relationships to other IT artifacts.

R18: The IT infrastructure modeling language should explicitly account for abstractions of the
used data structures, allowing for classification of processed data.

Functional integration

Purpose: In the analysis of functional integration, functions provided by different IT artifacts are
considered together with their data sharing interfaces. One is interested in identifying similar
functions offered by different artifacts in order to identify potential redundancies and assess the
potential for integration. Note here that our analysis questions regarding functional integration,
and its according conceptualization (e.g., in terms of the concept function topic, cf. Chapter 3),

14

IT Modeling Language (ITML): A DSML for Supporting IT Management

can be foreseen to be elaborated in terms of dedicated additional concepts and according
diagrams. For example, it may be used to combine functional notions as contained in a Data
Flow Diagram, with information and action system notions, such as software applications
provisioning certain functions. Such an “enriched Data Flow Diagram” is however out of the
scope of the current research report.

Exemplary questions of interest:

∙ What functions are provided by which artifacts?

∙ What interfaces are provided by a software artifact?

∙ Where which functions are provided and used?

∙ Which artifacts provide similar functions?

∙ Which artifacts provide some specific function?

Key concepts: function, provides function, uses function, interface

Requirements:

R19: The IT infrastructure modeling language should explicitly account for functions covered
by IT artifacts belonging to the IT landscape. It should be possible to relate software artifacts
to functions that they cover. Finally, it should be possible to state assessed similarity between
functions.

R20: The IT infrastructure modeling language should explicitly account for interfaces and
functionalities offered by IT artifacts.

Integration and reuse

As an noteworthy excursus, it is worth pointing out some design conflicts that should be
considered here. Consider for instance two objects/components, which share a common
semantic reference system. Firstly, the lower the range of interpretation of the concepts in
this common semantic reference system, the higher is the level of integration between the two
components. For example, it could be that both objects/components share the class “Printer”
with specific attributes like “printingSpeed”. When one object/component communicates
about a specific printer, the class “Printer” lowers the range of interpretation compared to
something as generic as an “Object”. At the same time, a higher integration comes at the
cost of a lower range of reuse. Namely, the lower range of interpretation inherent to higher
integration also - by definition - excludes interpretations that - as a systems analyst - one at
times might want to include, e.g., in the communication between two objects/components. In
the most extreme case, this can be achieved by labeling everything as an “Object”, which has a
very high range of reuse. However, due to its low level of information content “Object” can

15

2 Main Analysis Scenarios

hardly be considered to foster a high level of integration. As such, while not in the focus of this
research report, finding an appropriate balance between reuse and integration is a key task
for an information systems analyst. Therefore an IT infrastructure modeling language should
allow representing this conflict, e.g., by expressing levels of semantic on an ordinal scale. For
further discussion, cf. (Frank 2014a).

2.4 Integrated IT Infrastructure and Action System Analysis

In this section, we mention a few exemplary analysis scenarios that become possible once
an IT infrastructure modeling language is part of an enterprise modeling approach, i.e., IT
landscape may be analyzed in the context of enterprise action system (e.g., business processes,
organizational structure, or defined goals). Thus, to support integrated analysis scenarios
mentioned subsequently, an IT modeling language needs to be integrated with other modeling
languages, and all involved languages need to be used in tandem.

2.4.1 Analysis of IT-Business Alignment

Purpose: IT-business alignment focuses on how effectively the IT landscape supports and
enables the business strategy of a company. Via the analysis of IT Infrastructure models, in
tandem with models which express a different perspective on the enterprise action system
(such as business processes), it should be possible to (1) assess and, if necessary improve, the
alignment of IT and business to ensure that they work as a partnership and support enterprise
business processes; (2) conduct analysis of the IT environment for strategic planning (e.g.,
by determining which elements of IT infrastructure support the fulfillment of enterprise’s
goals).

In order to assess the IT-business alignment, it is necessary to define (1) which elements of IT
infrastructure support directly business processes, as well as the properties of such a support.
Such properties include relevance for a process, or frequency of usage; (2) which elements of
IT infrastructure support which enterprise’s goals, as well as properties of such a support.

Subsequently, knowing which services/applications are critical (to both business processes as
well as defined goals) allows to investigate the physical IT infrastructure underneath, in terms
of the (characteristics of) used operating systems, computational infrastructure, and storage
infrastructure.

Exemplary questions of interest:

∙ Which applications are critical for the core business?

16

IT Modeling Language (ITML): A DSML for Supporting IT Management

∙ What is the contribution to the strategical goals of an organization that each application
make?

∙ Which business processes are supported by which application?

∙ Which business units use which applications for which business processes?

∙ What are the characteristics of the support provided by some applications/services to
business processes and their elements? Which processes in the organization depend
highly on the IT infrastructure?

∙ Which organizational actors would need to be considered for additional software training,
if we change the application software used to support some process?

Key concepts: IT service, software artifact, support relation, business process, organizational
unit

Requirements:

R21: The IT infrastructure modeling language should allow to link elements of IT landscape
and processes they support. The characteristics of the support provided should be accounted
for.

R22: The IT infrastructure modeling language should allow to relate IT landscape elements to
goals of organization, in terms of the influence of these elements on goal achievement. The
characteristics of the influence provided should be accounted for.

As a brief excursus note that, especially with analysis which cut across different concerns, the
need for a modeling language again becomes apparent. In this case, to get stakeholders coming
from different professional backgrounds on the same page, a visual modeling language as an
instrument for gaining consensus would be called for.

2.4.2 Analysis of Organizational Assignment

Purpose: The organizational assignment should be clearly communicated. It should be also
possible to point to existing responsibilities assignment for each IT artifacts. When it comes
to specifying the “who”, various organizational structure elements can be meant, such as a
particular organizational role (e.g., an IT administrator), or various kinds of organizational
units (such as a department). By analyzing the organizational assignment, we are not only able
to answer the questions regarding some specific responsibilities (e.g., responsible, accountable,
consulted and informed (RACI), cf. also (Feltus, Petit, and Dubois 2009)), but also check
whether each IT artifact type has someone responsible assigned, whether the appropriate
organizational units are assigned, whether there is some optimization potential (e.g., similar

17

2 Main Analysis Scenarios

applications are assigned to different organizational units, or applications written using Java
are assigned to a C# Programmer). It is also possible to identify problems resulting out of
the incorrect division of responsibilities (e.g., different organizational units involved in the
maintenance process). In addition, one can check the workload of, e.g., some specific roles.

Exemplary questions of interest:

∙ Which organizational unit is assigned, e.g., as a responsible or accountable for an element
of IT landscape of interest?

∙ Do all elements of the IT landscape have a responsible person assigned?

Please note that the consideration of the location, performance, availability, as well as organiza-
tional assignment may trigger analysis of consolidation opportunities, which are there regarding
the shared use of infrastructure, taking into account aspects such as performance, security and
maintenance windows.

Key concepts: Organizational unit, software artifact, hardware platform, responsibility relation

Requirements:

R23: The IT infrastructure modeling language should allow to link elements of IT landscape
with organizational units and express the role of linked organizational units.

18

IT Modeling Language (ITML): A DSML for Supporting IT Management

3 Language Design: Abstract Syntax and Semantics

The analysis of the requirements performed in the previous section clearly shows that a
language for modeling IT infrastructures requires a careful reconstruction of technical concepts
from the field of IT management. Those concepts should be, on the one hand, (1) general
enough to account for all relevant IT infrastructure elements, and, on the other hand, (2) specific
enough, to support differentiated analyses, necessary to answer the questions mentioned in
the previous section. Therefore, in line with the identified requirements, on the one hand, the
ITML should provide semantically rich concepts reconstructing the technical terminology of
the IT domain, and on the other hand, the ITML’s concepts should be applicable to a wide
range of enterprise settings and over a longer period of time, therefore, they should be generic.
The reconstruction should account for different perspectives and granularity levels, as well as
consider concepts from the business domain.

The concepts offered with the ITML are designed to support IT management with relevant
analyses. The corresponding analysis questions however, cannot always be answered using a
model of the IT infrastructure only. Sometimes it is necessary to include models of the action
system, specific models of the software used, or acquire additional data from within or outside
of the organization in question.

Taking the above into consideration, in what follows, we discuss the abstract syntax and se-
mantics of the designed modeling language. Note that the borderline between abstract syntax
and semantics is blurred. Specific aspects of a language can often be specified with its abstract
syntax or, alternatively, with its semantics. For the sake of simplification, we assume that the
abstract syntax is defined through the part of a meta model that corresponds to its graphical
representation in a diagram, while additional semantics is defined through constraints, e.g.,
Object Constraint Language (OCL) constraints. In addition to these formal characteristics of a
language, conceptual modeling also requires accounting for material semantics or the meaning
contributed to a concept by humans. The meaning of concepts found in the domain of IT
management is relevant for two reasons. First, it serves us as a starting point for the reconstruc-
tion of domain languages through the ITML. Second, the concepts of the ITML themselves
need to be explained to prospective users, which recommends referring to corresponding
domain-specific concepts.

As we create the ITML with an intention to be used with other MEMO languages, its abstract
syntax is defined using the MEMO method’s common Meta Modeling Language (MML)

19

3 Language Design: Abstract Syntax and Semantics

(Frank 2011) to foster the DSML’s integration into MEMO method’s language architecture
(Frank 2014b, pp. 947-950). The MML in addition to the other concepts commonly used in
meta modeling, provides the possibility to model intrinsic features1 and intrinsic relations.
This intrinsicness, marked by the literal “i” in white color on a black background, allows for
modeling concepts, attributes and relations that may be instantiated only on the instance level,
and not on the type level. In addition, the MML allows for modeling so called Language Level
Types – visualized with a black name of the concept on a grey background – which allow for
specifying concepts that represent instances already on the model level (M1), and cannot be
instantiated on the instance level (M0) anymore (Frank 2011, pp. 23-24).

In the following, we present and discuss excerpts of an ITML meta model. We point to
our understanding of selected concepts, as well as analysis possibilities resulting out of the
proposed conceptualization.

While looking at the presented meta model’s excerpts, please note the following:

∙ Defined attributes and relationships encompass both type-level as well as instance-level
aspects (intrinsic attributes and relationships). As visible in the requirements identified
in the previous sections (cf. especially R1), IT management focuses on both individual IT
artifacts as well as their types, depending on the goals of the analysis;

∙ The meta types could be described in a more differentiated manner. For instance, in
the case of mobile computers the size and resolution of the screen could be taken into
account. We have refrained from such details in order to maintain the clarity of the
diagrams;

∙ As various meta types may appear multiple times in different meta model excerpts, their
attributes are presented only within one excerpt, and in other visualizations replaced by
“...”;

∙ The relevant integrity constraints are formulated using the Object Constraint Language
(OCL), whenever possible. Please note however, that one is not able to use OCL to
formulate constraints that relate to the instance level (i.e., that relate to instrinsic attributes
and/or relationships). This would be however necessary to ensure integrity on the
instance level. For instance, a specific central processing unit is mounted on some specific
hardware platform, but a type of CPU fits one or more types of hardware platforms.
Therefore, a constraint would have to be specified that ensures that some specific CPU is
mounted on only specific hardware platforms, whose types the CPU type fits. In those
cases, we formulate the constraints in the natural language only. All constraints may be
found in Table 3.7.

1Intrinsic features “can be instantiated only from the instances of their instances”, i.e., a meta type or meta attribute
can be instantiated only on M0, but not on the M1 level (Frank 2011).

20

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.1: Meta Model Excerpt: Platform, for constraints, cf. Tab. 3.7

3.1 Main IT Landscape Elements

In what follows, we provide an overview of the IT landscape elements whose analyses are
supported by the ITML, with a focus on the scenarios introduced in Section 2.1.1–2.1.3.

Platform. Computer hardware, whose resources are made accessible via operating sys-
tems, constitutes a basic element of an IT infrastructure. To represent it, we define a con-
cept ‘specific platform’, cf. Fig. 3.1. In a simplified representation, a specific platform (cf.
SpecificPlatform) consists of a hardware platform, encompassing among others a proces-
sor along with main memory, and an operating system. In addition to physical platforms, there
are also virtual platforms, i.e., those that are simulated by software. Thus, we differentiate
between a physical platform (cf. HardwarePlatform), provided in some case, and a virtual
one (cf. VirtualPlatform, Fig. 3.1), which can be realized by a virtual machine. A virtual
machine is conceptualized in the ITML as a specialization of an abstract meta type Software,
discussed further in this section, cf. Figs. 3.3-3.5.

An OperatingSystem is a specialization of the abstract meta type Software. Following
Tanenbaum and Bos (2014), operating systems, on the one hand, manage the different parts

21

3 Language Design: Abstract Syntax and Semantics

of the system efficiently, i.e., provide “a clean abstract set of resources instead of the messy
hardware ones and managing these hardware resources” (p. 4), on the other hand, the job of the
system is “to provide the users with abstractions that are more convenient to use than the actual
machine” (p. 80) (e.g., processes, files). An operating system has an operating system kernel
(modeled as a language level type, OSKernel), responsible for managing communication
between hardware and software, memory, cache, hard drive, etc. Kernels vary widely in
function and scope, and significantly affect their operating system’s capability. Operating
systems come in different types (e.g., embedded, real-time, multi-user), and have various
features. For details regarding properties of an operating system, cf. Figure 3.3.

Table 3.1: Language specification: Comments on Hardware Platform and related concepts, cf. Fig. 3.1
Concept: Hardware

Platform

Description: Hardware Platform, next to Virtual Platform, is a basic element of
an IT infrastructure. Resources offered by a hardware platform are made accessi-
ble via an operating system. It consists, among others, of a central processing
unit along with a main memory.

Supertypes
Platform

Attributes on the type level
name String Allows for stating the name of the hardware platform.
maxNoOfProcessors Integer Allows for stating the maximal number of processors sup-

ported.
noOfExemplars Integer It is an obtainable attribute allowing to state how many

exemplars of this specific hardware platform type there
are.

Attributes with reference to the instance level
actMemory MemorySizeValue Allows for stating the size of the memory (e.g., 1 GB).
obtained Date Allows for stating when the specific exemplar of a hard-

ware platform has been obtained.
serialNo String Allows for stating the serial number of a hardware plat-

form instance.
Selected Associations
fits and [i]
mountedOn

(source: CPU, target:
HardwarePlatform)

1,* – 1,* (fits)
1,* – 1,1 (mountedOn)

Allows to state what type of CPU fits to a specific type
of a hardware platform as well as, on the instance level,
what instance of a CPU has been mounted on some specific
exemplar of a hardware platform.

fitsTo and [i]
builtInto (source:
HardwarePlatform,
target: Case)

1,* – 1,* (fitsTo)
0,1 – 1,1
(builtInto)

Allows to state what case a specific type of a hardware
platform fitsTo (on a type level), as well as, on the instance
level, what case some specific exemplar of a hardware
platform has been built into.

22

IT Modeling Language (ITML): A DSML for Supporting IT Management

Sometimes a specific platform does not contain a complete operating system, but only
the operating system kernel (OSKernel), which handles input/output, memory manage-
ment etc., cf. (Tanenbaum and Bos 2014). Such a platform is shown in the meta model as
MinSpecificPlatform. This concept is important in connection with the installation and
deployment of software, cf. Fig. 3.8.

Table 3.2: Language specification: Comments on Operating System Kernel, cf. Fig. 3.1
Concept: OSKernel Description: Language Level Type. Kernel is a core feature of any operating

system. It manages communication between hardware and software, memory,
cache, hard drive etc. Kernels vary widely in function and scope and significantly
affect their operating system’s capability.

Attributes
name String Allows for stating the name of the kernel.
version String Allows for stating the version of the kernel.
type Enumeration Allows for stating the type of the kernel, such as: mono-

lithic, hybrid, microkernel, nanokernel, exokernel.
multiTasking Boolean Allows for stating whether the kernel supports multitask-

ing.
multipleArchi-

tectureSupport

Enumeration Allows for stating whether the kernel supports multiple
CPU instruction sets and micro architectures.

Selected Associations
partOf (source:
OSKernel; target:
OperatingSystem)

1,1 – 0,* Allows to state that a specific kernel is part of an operating
system.

partOf (source:
OSKernel; target:
MiniSpecific-

Platform)

1,1 – 0,* Allows to state that a specific kernel is part of a mini spe-
cific platform.

With respect to the relation between software and platforms, it is important to distin-
guish two cases. First, software may be executable on some kind of platform type. Sec-
ond, software may be executed on a certain platform. The first case is represented by
the association executableOn between ApplicationAndSystemSoftware (being a spe-
cialization of Software, cf. also Fig. 3.5) and some SpecificPlatform. The second
one is represented by the intrinsic, i.e., instantiated at M0, association runsOn, between
ApplicationAndSystemSoftware and some SpecificPlatform.

A physical platform can take different forms. It can be mounted in a case (Case) that is
intended for either stationary or mobile use. Such physical platforms are often also mounted
in racks, each of which has a certain number of slots, cf. Fig. 3.1. Physical components of a

23

3 Language Design: Abstract Syntax and Semantics

hardware platform (cf. HardwarePlatform), such as special case types, are only relevant, if
the corresponding devices are managed in the company. If platforms are located in a separately
operated data center, this physical element (like the case) can be abstracted away.

Figure 3.2: Meta Model Excerpt: Hardware, for constraints, cf. Tab. 3.7

Peripheral Device and Infrastructural Hardware. To support the variety of analysis scenar-
ios from Chapter 2, one can distinguish between different types of hardware devices according
to their primary purpose, architecture, or a role to a user. From a modeling perspective such
differentiation can be expressed by using relevant meta types, by using generalization/special-
ization, or by using an enumeration attribute of the generic meta type.

The excerpt of the meta model in Fig. 3.2 shows a possible conceptualization of a hardware
device. Traditionally a hardware device has some Location (a language level type), is
connectable to some SpecificPlatform or may be accessed to by it. A software artifact
may require some hardware device, and actually use some device on the instance level (cf. an
intrinsic relationship uses).

We specifically differentiate between PeripheralDevice (with such specializations as,
e.g., Printer or External Storage) and InfrastructuralHardware (with such possible
specializations as, e.g., Access Point or Router). Please note that each meta type has a
set of dedicated attributes and specific relations. And so, PeripheralDevice can be
accessible via a Network or be accessible only via some specific SpecificPlatform:
a PeripheralDevice may be connectableTo (on the type level) or connectedTo (on

24

IT Modeling Language (ITML): A DSML for Supporting IT Management

the instance level) to some SpecificPlatform. InfrastructuralHardware may in turn
provide an access to a Network.

Table 3.3: Language specification: Comments on Hardware Device, cf. Fig. 3.2
Concept: Hardware

Device

Description: a hardware device which a platform can interact with, and which
typically is not a core part of the platform.

Subtypes
Peripheral device, Infrastructural device

Attributes on the type level
name String Allows to provide a name.
isPower-

Independent

Boolean Allows to state if a separate power source is necessary.

isNetworkCompati-
ble

Boolean Indicates compatibility with a given network.

reqAvailability OrdinalAssessment Allows to express the required availability of a hardware
device.

lifecyclePhase LifecyclePhase Indicates the life-cycle phase of a hardware device, ranging
from acquisition, operation, to disposal.

noOfExemplars Integer Used to track the number of hardware devices.
avgPerformance-
Assessment

OrdinalAssessment Expresses the estimated average performance.

Attributes with reference to the instance level
serialNo String Allows to indicate the unique serial number.
introduced Date Expresses the date a hardware device has been introduced.
actAvailability OrdinalAssessment Allows for expressing the actual availability, which in an

analysis can be compared to the required availability (in
support of the availability analysis scenarios from Chap-
ter 2).

actProcurement-
Cost

MonetaryValue Can be used to specify the upfront investment for acquir-
ing a hardware device.

actMaintenance-
Cost

MonetaryValue Allows for specifying the maintenance cost of a hardware
device.

actPerformance-
Assessment

OrdinalAssessment Expresses the actual performance of a hardware device
(forming input to the attribute average performance on the
type level).

Selected Associations
conectableTo 0,* – 0,* with SpecificPlatform.

[i] connectedTo 0,* – 0,1 with SpecificPlatform.

mayHaveAccessTo 0,* – 0,* from SpecificPlatform.

[i] accessTo 0,* – 0,* from SpecificPlatform.

Constraints
CH1 A hardware device may be connected to a specific platform being an instance of

a type of a specific platform that a hardware device in question is connectable to.
CH2 A specific platform may access a hardware device being an instance of a type

that a platform may have access to.

Continued on next page

25

3 Language Design: Abstract Syntax and Semantics

Table 3.3 – Continued from previous page

CH3 A software uses a hardware device being an instance of a type that it requires.
CN2 A specific platform is connected to a network being an instance of a type that

the given specific platform may have access to, cf. Fig. 3.7
.

Table 3.4: Language specification: Comments on Peripheral Device, cf. Fig. 3.2
Concept:
Peripheral

Device

Description: auxiliary device which a platform can interact with, and which
typically is not a core part of the platform.

Supertypes
HardwareDevice

Subtypes
Printer, Scanner, ExternalStorage
Attributes on the type level
isMobile Boolean Indicates how mobile the peripheral device is (e.g., in

terms of size, or mass).
isStandAlone Boolean Indicates the autonomy of a peripheral device, e.g., the

need for additional power bricks for external hard drives.
Attributes with reference to the instance level
isActive Boolean As implied by its name, this attribute indicates the activity

status of the peripheral device.
Selected Associations
providesAccessTo

(from Network to
PerhiperalDevice)

0,* – 0,* Allows to express that a network can provide access to a
peripheral device.

Software. Software is ubiquitous and, at first glance, one may have a clear idea of what
constitutes software. Whereas hardware is usually considered to consist of tangible objects
(e.g., integrated circuits, circuit boards, cables, powers supplies, memories, card readers),
software consists of algorithms (detailed instructions on how to do something) and their
computer representations, cf. (Tanenbaum 2006, p. 9). However, on closer inspection the
conceptualization of software is by no means trivial.

The excerpt of the meta model in Fig. 3.3 shows a possible conceptualization of soft-
ware. Here a particular software is represented as a type that is instantiated from one
of the concrete subclasses of the abstract meta type Software, implemented using some
ProgrammingLanguage. An Installation is required to use software. The software
is installed from its file representation, whereby different forms of representation have to

26

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.3: Meta Model Excerpt: Software, for constraints, cf. Tab. 3.7

be taken into account. In addition to executable files (ExecFile), special archive files
(ArchiveFile), such as JAR files for Java programs, should be considered. There are also im-
age files (ImageFile) that contain a binary, machine independent, but not directly executable,
representation of a program. Finally, container images (ContainerImage) are files which, in
addition to the actual software, also contain the resources required by the software, so that
their execution by a container engine (ContainerEngine) requires only a minimal specific
platform, cf. also the deployment excerpt of a meta model, Fig. 3.8.

27

3 Language Design: Abstract Syntax and Semantics

A Software is typically installed on some file management system (cf. FileSystem). Soft-
ware is then represented as one or more files in a form that allows for its execution. Alter-
natively, the installation can take place in a DataCenter. In the latter case, one can abstract
away from the FileSystem a Software has been installed on, since this is the responsibility
of the DataCenter. When a data center hardware and software is used to make (application)
software accessible over interfaces, we speak of a so-called “cloud”.

Whereas one could introduce here common categories of cloud services, such as Software as
a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS), this would
however considerably increase the complexity of analysis scenarios considered. Therefore,
although modeling of “cloud” aspects is certainly a problem area of its own, we decided to
follow a pragmatic solution, and account for cloud-based elements via an attribute inCloud.
This has the advantage that cloud-based application systems can be modeled and classified in
the IT infrastructure in the same way as conventional applications.

Software can have an interface for other programs, which can be used to access, or possibly
modify, the functions it provides. Such an interface, also referred to as an API (“Applica-
tion Programming Interface”), can be synchronous or asynchronous. Therefore, a Software
provides and/or uses some API, which in turn is specialized into Synchronous and
Asynchronous one. In order to depict dependencies between software, a communication rela-
tion, which may be based on API and use some exchange format, allows to specify how
data is being exchanged. For instance, one may state whether there is a need for man-
ual activity, or what is the frequency of communication. Furthermore, DataStructure
allows for a high-level description of the exchanged data, a kind of common concepts,
as well as expected frequency of change, business relevance and abstraction level. In ad-
dition, a Software may define (and also use) a MiddlewareInterface, which is de-
fined using an InterfaceDescriptionLanguage, and is provided by some Middleware.
MiddlewareInterfaces are stored in a MiddlewareInterfaceRepository.

Additional dependencies between software artifacts are represented by the relationships
requires (Software requires Software), and partOf providing a possibility to model
a system/complex software type offered as one product. Finally, a software artifact may be
distributed (be part of) a software suite (cf. Software belongsTo SoftwareSuite).

The legal use of Software requires a License. To this end, one can, roughly speaking, dis-
tinguish two types of License. Proprietary licenses (PropLicense in Figure 3.3) are issued
individually by software vendors. Open Source Licenses, also called FOSS (“Free and Open
Source Software”), exist in various forms, from which we abstract in this research report.

License Agreements refer to a license type and establish the conditions of software use, like
the maximum number of concurrent users. Such conditions are unusual in the case of FOSS,
but they are still possible.

28

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.5: Language specification: Comments on Software, cf. Fig. 3.3
Concept: Software Description: A detailed set of instructions that tells a hardware (platform) how

to carry out a certain task.
Subtypes
OperatingSystem, ApplicationAndSystemSoftware, Component, Webclient, Middleware
Attributes on the type level
name String Allows for specifying a name.
version String Allows for specifying a version.
missionCritical Boolean Indicates if the software is mission critical.
reqAvailability OrdinalAssessment Indicates the required availability of the software (cf. the

analysis scenarios in Chapter 2).
maintenanceCosts MonetaryValue Indicates the maintenance costs of a software.
scalability-
Assessment

SimpleAssessment Can be used to express the estimated scalability of a soft-
ware (cf. the analysis scenarios in Chapter 2).

designRationale String Can be used to denote the expressed rationale standing
behind a software.

customMade Boolean Used to express if the software has an off-the-shelf charac-
ter.

avgPerformance-
Assessment OrdinalAssessment Used to express the average estimated performance of a

software (in line with the analysis scenarios from Chap-
ter 2).

sourceCode Boolean Indicates availability of a software’s source code.
scalabilityIssue Boolean Allows, in a rudimentary manner, to indicate if a scalability

issue exists with a software.
substitutability SimpleAssessment Indicates the extent to which a software can be substituted.
adaptVendor-
Related

SimpleAssessment Indicates the adaptability as far as the vendor is concerned.

adaptArchi-
tectureRelated

SimpleAssessment Indicates the adaptability as far as the architecture is con-
cerned.

Attributes with reference to the instance level
actAvailability OrdinalAssessment Allows for expressing the actual availability (and thus also

for a comparison to the required availability on the type
level, cf. analysis scenarios in Chapter 2).

introduced Date Indicates the date on which a software has been intro-
duced.

actPerformance-

Assessment

OrdinalAssessment Indicates the estimated actual performance of a software
(in line with the analysis scenarios from Chapter 2).

Selected Associations
partOf 1,* – 0,* with Software; a software may be part of another software.
uses 0,* – 0,* with API, Library, MiddlewareInterface, pointing that a

software artifact uses an API, a Library or a MiddlewareIn-
treface, respectively.

has 0,* – 0,1 with Vendor; allows to point to a vendor of a software
artifact.

Continued on next page

29

3 Language Design: Abstract Syntax and Semantics

Table 3.5 – Continued from previous page

referredBy 1,1 – 0,* with SoftwareCommunicationRelation; SoftwareCommu-
nicationRelation allows to define software artifacts commu-
nicating, as well as characteristics of this communication.

provides 0,1 – 0,* with API; allows to define APIs provided by a software
artifact.

belongsTo 1,* – 0,* with SoftwareSuite.
Constraints
CS1 Software cannot use itself.
CS2 Software cannot be part of itself.
CS3 Software cannot communicate with itself.
CS7 Software can be stored only on specific replication files that software, on the type

level, is storable.
CS8 Software cannot use a library that it represents.

Software may use a Library. A library is a collection of non-volatile resources, such as
implementations of functions or classes. A Library has a well-defined interface that allows
for accessing its resources.

Figure 3.4: Meta Model Excerpt: IT-Service, for constraints, cf. Tab. 3.7

Functions of Software may use or provide some Services. A service, in turn, offers some
function that can be invoked over the network. Please note that we consciously opt here for a

30

IT Modeling Language (ITML): A DSML for Supporting IT Management

narrow service definition, which focuses on the technical – software – side only. In line with the
notion of service-orientation (Papazoglou and Van Den Heuvel 2007, p. 390), the service notion
abstracts away from how the function offered by a service is realized. Such a service is usually
characterized by a specific interface that typically abstracts from a specific programming lan-
guage and thus, also from its specific implementation. A subtype of a service is a WebService,
which uses a WebServer, providing or using some API. The function offered by a service
(expressed through, e.g., a service level) can be defined within a ServiceContract.

Table 3.6: Language specification: Comments on Service, cf. Fig. 3.4
Concept: Service Description: An IT artifact, usually a piece of software, offering some function

that can be invoked over the network. The function offered by a service and its
characteristics may be defined within a service contract.

Subtypes
Web service

Attributes on the type level
name String Allows for specifying a name.
description String Allows for specifying a description.
isExternal Boolean Allows for expressing if a service is external to an organi-

zation.
authorizationType AuthorizationType Allows for expressing the type of authorization needed to

access a service.
avgResponseTime OrdinalAssessment Allows for expressing the average response time.
avgReliability OrdinalAssessment Allows for expressing the average reliability.
avgAvailability OrdinalAssessment Allows for expressing the average availability (e.g., to sup-

port the analysis scenarios discussed in Chapter 2).
avgUserSatisfact-
ion

OrdinalAssessment Allows for expressing the average user satisfaction with a
service.

serviceCategory external-customer,
internal-customer,
supporting

Allows for expressing the service category.

inCloud Boolean Allows to state whether a service is offered as a cloud-
based service.

Attributes with reference to the instance level
actAvailability OrdinalAssessment Allows for expressing the actual availability of a service

(it can be then compared to its average availability on the
type level for analysis purposes).

actResponseTime OrdinalAssessment Allows for expressing a service’s actual response time (it
can then be compared to its average response time on the
type level for analysis purposes).

Selected Associations
uses 0,* – 0,* with oneself; a service may use another service.
uses (source:
Software, target:
Service)

0,* – 0,* Points to what software uses the given service.

Continued on next page

31

3 Language Design: Abstract Syntax and Semantics

Table 3.6 – Continued from previous page

provides (source:
Software, target:
Service)

0,1 – 0,* Points to what software provides the given service.

refersTo (source:
ServiceContract,
target: Service)

0,* – 1,* Allows to attach one or more service level contracts to a
service.

Constraints
CS10 A service cannot use itself.

As already mentioned, a particular software is represented as a type instantiated from one
of the subclasses of the abstract meta type Software. Please note that taking into account
the identified analysis scenario, a classification of a generic concept like software seems to
be necessary. However, software can be categorized with regard to its primary purpose,
architecture (e.g., client/server), visibility to a user (e.g., back- end, front-end) or by looking at
its role. From a modeling perspective such differentiation can be modeled in different ways: by
using relevant meta types, using generalization/specialization, using an enumeration attribute
of the generic meta type (e.g., type of software), or as a role. Taking into account identified
requirements as well as analysis scenarios, we have decided to account for this mostly by
using the specialization relation (particularly subtypes of Software). This is visible in Fig. 3.5,
where the hierarchy of software artifacts, starting from abstract software concepts, through,
e.g., application and system software, to application server, IT management tools and others, is
presented. In addition, by taking advantage of of enumerations, we have offered a possibility
to assign an application software to a software category. Possible instances of software category
may be, among others, Enterprise Software, Office Software.

Table 3.7: Language specification: Comments on Server, cf. Fig. 3.5
Concept: Server Description: A Server provides resources and functionality to clients (other

types of software), typically over a network as a response to a request from
aforementioned clients.

Supertypes
Application and Technology Software, Software
Subtypes
Web server, Application Server, File Server, Database Management Server

Attributes on the type level
encrypted

access

Boolean Allows for expressing if the server access is encrypted.

Attributes with reference to the instance level
address String Indicates the address at which a particular server can be

accessed (e.g., an URL).

32

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.5: Meta Model Excerpt: Software Hierarchy, for constraints, cf. Tab. 3.7

33

3 Language Design: Abstract Syntax and Semantics

Table 3.8: Language specification: Comments on Application Software, cf. Fig. 3.5
Concept:
Application-
Software

Description: Application Software provides a functionality to the end user,
different from functionality required to run a system itself.

Supertypes
Application and Technology Software, Software
Subtypes
e.g., EnterpriseSystem, IT ManagementTool, DistributedLedger, DataWarehouse,
InductiveSystem

Attributes on the type level
avgUserSati-
sfaction

OrdinalAssessment Allows for expressing the average user satisfaction.

varianceOfSati-
sfaction

OrdinalAssessment Allows for expressing the variance of user satisfaction.

dataModel Boolean Allows for expressing if a data model exists for the Appli-
cation Software.

codeComplexity OrdinalAssessment Allows for expressing the code complexity of the Applica-
tion Software.

inCloud Boolean Allows for expressing whether the given application is
cloud-based.

Selected Associations
has 0,* – 0,* with SoftwareCategory.

Please note that as part of the mentioned hierarchy of software concepts, in order to account for
systems that make use of inductive approaches, we introduce the concept InductiveSystem.
InductiveSystem, being an ApplicationSoftware, is an abstraction over software ap-
plications relying on machine learning approaches. Instead of programming the solution
directly, a machine learning algorithm follows a data-based approach, and based on training
data produces a solution program (called the learned model). Machine learning relies on
well-established algorithms from mathematics and statistics, such as, e.g., regression, bayesian,
or decision trees (Barber 2012; Deisenroth, Faisal, and Ong 2020).

Persistence. Figure 3.6 depicts our conceptualization of persistence. Here, two dedicated
software systems play a notable role. A FileSystem manages persistent data in the form
of files. DatabaseManagementSystems (DBMSs) manages data in the form of Databases,
which are typically structured in accordance with a database schema. A database can be stored
on a data management system, or directly on a physical storage medium (PhysicalStorage), so as

34

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.6: Persistence in the ITML – selected aspects

35

3 Language Design: Abstract Syntax and Semantics

to potentially increase performance. We assume that software reads data from and writes data
to either a file or a database. In the case of a database, one can access a database either directly
or indirectly through some kind of intermediate framework. The latter case is expressed by
the association uses between Software and PersistencyFramework. Since it will often
be important to know what database is used by a software system, the associations read
and write between Software and Database are to represent both cases, direct and indirect
access. The association uses between Software and PersistencyFramework only serves
to add the information that some, or maybe all, database accesses are done indirectly through a
persistency framework. An additional constraint ensures that a persistency framework can be
assigned to a software system only, if it is linked to at least of one of the databases the software
system writes to or reads from.

It may be irritating that File is represented by a meta type, while Database is a type only.
This is indeed not satisfactory, but it is, once again, a reflection of the limitations of (traditional)
meta modeling languages. One could either specify that a certain software system (not a
particular instance of it) writes data either to a particular file or to a type of file (which could
be expressed by the extension of the file name). The first alternative would be strange, since it
would, e.g., imply that a certain type of software like MS Word always writes to a particular
file. The second alternative is not convincing either, but is the lesser evil. It does not allow
assigning particular instances of a software systems to particular files. The use of intrinsic
attributes (created, modified, size) allows to express properties of particular files, but is, in the
end, a poor workaround only, as long as it is not possible to create instances from instances.

The associations between Software and Database represent a similar constellation. Never-
theless, we decided for a different option here. It is based on an assumption that is questionable.
Software systems of a certain kind that use databases are likely to use one (or a few) specific
instances only. First, they will often exist in one or a few instances only, e.g., an ERP system.
Second, even if there are a few instances, and this is the problematic part of the assumption,
they are likely using the same database. Therefore, Database is, different from File located
on M0.

Distributed resources. Here, we focus on a set of dedicated (predominantly software, but
also hardware) components that allow to treat distributed resources, as if these are local
resources. In other words, these components allow for transparent access to distributed
resources (Tanenbaum and Bos 2014).

Networks, cf. Fig. 3.7, of which there exist several specialized types (like LAN, or WLAN),
offer a communication infrastructure to various platforms (SpecificPlatform) connected
by the network(s), which can be used by software running on these platforms.

36

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.7: Meta model Excerpt: Network and related concepts, for constraints, cf. Tab. 3.7

In turn, cf. Fig. 3.8, Servers allow to access functionality offered by a software. There exist
a variety of software systems, which are implemented as a server. Of particular importance
are Servers which allow for remote data access, being FileServer, DBMS Server, and a
Webserver, which hosts websites. Additionally, ApplicationsServers, which are often
considered as being part of Middleware, ensure distributed execution of programs, and
ensure availability of the programs over the Middleware. Middleware offers operating
system functions in a heterogeneous, distributed environment, so that distribution is (ideally
speaking) made transparent. The user and programmer (again, ideally) receives the impression
of working on a local machine. Workflow-Management-Systems (WFMS in Figure 3.8) enable
the use of functions from different, distributed, software systems in the context of process
execution.

One notion has gained particular importance in recent years: container and its associated con-
cepts. Important to containers are container images (ContainerImage), whereby a container
image is a file that contains all the resources required to run a program, except for the operating
system kernel. This enables a high degree of portability. At the same time, the installation can
be largely automated. A container image is loaded when required, which creates a container,
one could also say: the container is instantiated from the container image. A container is
executed by a special virtual machine (ContainerEngine). Containers can be combined into
groups so that the containers in a group share resources in a common namespace. In addition,
a ContainerOrchestrator can be used. The container orchestrator manages the life cycle
of container systems, so when the load increases, it starts additional containers or replaces

37

3 Language Design: Abstract Syntax and Semantics

Figure 3.8: Meta model excerpt: Aspects related to selected distributed resources, for constraints, cf. Tab. 3.7

38

IT Modeling Language (ITML): A DSML for Supporting IT Management

containers that fail. A well-known example of a program used to develop and run containers
is Docker, while Kubernetes is currently the best-known container orchestration software.

Table 3.9: Language specification: Comments on Container Image, cf. Fig. 3.8
Concept:
ContainerImage

Description: a file containing all the resources required to run a program (except
for the kernel of the operating system).

Attributes on the type level
format Docker,LXD,... Indicates the type of container image. E.g., Docker sup-

ports more the deployment of applications, whereas LXD
supports more the deployment of Linux virtual machines.

Attributes with reference to the instance level
storagePath String Indicates the the location of a Container Image.
Selected Associations
bundledIn 0,1 – 0,* with ApplicationSoftware/Component/WebService re-

spectively, to indicate that a container image bundles these
to provide a self-contained environment offering resources
to run a program.

Table 3.10: Language specification: Comments on Middleware, cf. Fig. 3.8
Concept:
Middleware

Description: software offering operating system-like functions in a distributed environment.

Supertypes
ApplicationAndSystemSoftware

Attributes on the type level
protocol String Prominently middleware protocols support communica-

tion over the middleware.
synchronous Boolean Indicates if the middleware is of a synchronous nature.
asynchronous Boolean Indicates if the middleware is of an asynchronous nature.
loadManagement Boolean Indicates the support of load balancing, i.e., the efficient

distribution of resources, by the middleware.
transaction-
Management

Boolean In transaction middleware, transactionManagement indi-
cates support for ensuring atomicity, isolation, and dura-
bility of a transaction.

type MiddlewareType Often occurring types include object-oriented middleware,
transaction middleware, message-oriented middleware.

Attributes with reference to the instance level
storagePath String Indicates the the location of a container image.
Selected Associations
partOf 0,* – 0,* with WebServer, ApplicationServer and WFMS.

39

3 Language Design: Abstract Syntax and Semantics

3.2 Selected IT-centric Analysis

IT Security. In line with our analysis scenarios discussed in the previous chapter, security is
a central issue in IT management, the importance of which is expected to continue to grow.
On the one hand, this is due to the increasing penetration of software by companies and the
associated dependency of the service creation processes on software and the managed data. On
the other hand, more and more valuable and confidential data is being managed in information
systems.

The meta model excerpt in Figure 3.9 depicts two aspects of essential importance to IT security:
(i) the protection from non-authorized attacks on networks or (virtual) platforms, by means of
a Firewall and its various specializations (cf. also Fig. 3.7), and (ii) data encryption, which is
indicated as an attribute for various components like a FileSystem (encrypted:Boolean), or
a Server (encyptedAccess:Boolean). Please note that the ITML has a simplified conception
of security only, as it is focused on supporting IT management analyses – for whom security is
only one concern among many. In addition, it must be taken into account that IT security does
not only depend on technical protective measures, but is also endangered by incompetence,
negligence or malevolence. Therefore, just looking at the IT infrastructure is not sufficient,
but rather, threats and protective measures that consider human actions must also be taken
into account. A more elaborate conception of IT security can be found in Goldstein and Frank
(2016).

Figure 3.9: Selected aspects related to IT security

Maintainability, Performance, Availability: As noted in Section 3.2.2-3.2.5, we support
analyses of the “qualities” maintainability, performance, and availability with a focus on
capturing the perception of the end user. The meta model excerpt in Figure 3.10 highlights this
focus on capturing the end user perception of these qualities, in terms of the attributes of the

40

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.10: Meta Model Excerpt: supporting Maintainability, Performance, Availability

two meta types Hardware and Software, from which specific hardware or software artifacts
inherit, like peripheral hardware for hardware cf. Section 3.1.

Specifically, availability is captured with attributes labeled as 1, whereby for both hardware and
software, both the required availability (reqAvailability on the type level), and the actual
availability (actAvailability on the instance level) are captured. Performance is captured
with attributes labeled as 2, whereby for both hardware and software artifacts a distinction
is made between the average estimated performance and the actual estimated performance.
Finally, maintainability is captured in terms of the software attributes adaptVendorRelated,
adaptArchitectureRelated, both of which focus on capturing estimated values, and the
software attribute sourceCode, which captures the availability of source code.

3.3 Integration: Technologies, Languages, and Conceptual Integration

With regard to the evaluation of IT infrastructures, the analysis of possible integration deficits
is of particular importance. The ITML supports such analyzes with dedicated concepts.
Some of these concepts have already been presented in connection with persistence and
distribution: databases that can be used by several software systems, middleware that allows
communication between heterogeneous applications, or WFMS that enables the dynamic
integration of functions of different software systems.

As per our scenarios in Section 2, integration covers various aspects. Therefore, even if the
consideration of dedicated integration technologies such as databases and middleware systems
is very informative, it is not sufficient in order to conduct a differentiated assessment of the
integration of two software systems. If, for example, two application systems use the same
database, it does not necessarily follow that all of the data required for communication between
these systems is also jointly used. To make an assessment regarding the level of integration, it is

41

3 Language Design: Abstract Syntax and Semantics

also necessary to consider the conceptual foundation of the systems involved. In addition, the
analysis should also make it possible to identify deficits in integration. To this aim additional
concepts are necessary.

Taking the above into account, besides the technologies supporting integration (like a DBMS,
or Middleware, cf. previous section), ITML includes prominently (i) Languages, and
(ii) Topics, both being used by various software artifacts. Topics support conceptual in-
tegration analysis (like the use of common data structures, or classes), independent of a
particular implementation.

Figure 3.11: Meta Model Excerpt: Languages

When it comes to languages, we use a language level type Language specialized into
DatabaseLanguage, MarkupLanguage, ModelingLanguage (allowing to define a
ConceptualModel), ProgrammingLanguage and IDL (Interface Description/Definition
Language), cf. Figure 3.11. For example, in case application A and application B are imple-
mented with different programming languages, their communication may need to be mediated
by a particular Middleware, with an according mapping of the respective programming
languages to a common IDL (Interface Description/Definition Language).

We introduce the concept of a Topic to enable integration analyses beyond the use of afore-
mentioned integration technologies or programming languages. When it comes to topic and
its related analysis, ITML offers various specializations: DataTopic, FunctionTopic, and
EventTopic. These topics denote abstractions of, respectively, used data structures, func-
tions, and events. Such abstractions are necessary since one cannot assume that different

42

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.12: Meta Model Excerpt: Topics, for constraints, cf. Tab. 3.7

implementations are the same, in terms of either their contents and naming conventions. For
example, to represent a Customer an application A could use the class “Customer” with the
attributes “firstName”, “lastName”, and “birthdate”, while for the same Customer representa-
tion application B uses a data structure “Kunde” with five attributes each having a specific
name.

Table 3.11: Language specification: Comments on Topic, cf. Fig. 3.12
Concept: Topic Description: Language Level Type. Abstraction over static, functional and

dynamic aspects.
Subtypes
DataTopic, FunctionTopic, EventTopic
Attributes
name String Allows for assigning a name. Note that the name should

be unique within the context of a subtype.
description String Allows for providing a description of a topic.
domainSpecific Boolean Serves the specify whether the given topic is domain spe-

cific or not.
Associations
includes 0,* – 0,* with self; allows to build hierarchies of topics.
uses 0,* – 0,* with self; allows to state what other topics are required by

a given topic.
Constraints, for a definition, see Table 3.7.

Continued on next page

43

3 Language Design: Abstract Syntax and Semantics

Table 3.11 – Continued from previous page

CT1 A topic cannot use itself.
CT2 A topic can only use another topic of the same type

(e.g., data topic can only use another data topic).
CT3 A topic cannot include itself.
CT4 A topic can only include another topic of the same type (e.g., data topic can only

include another data topic).
CT5 A function topic cannot be similar to itself.

A data topic represents a prototypical data structure or class, which abstracts away from
the used structure, as well as the used identifiers. So it is an abstraction over concrete data
objects. Examples of data topics include Customer, Product, Account, or Bill. Data topics allow
to answer the following analysis questions: (1) What are data topics covered in our system?
(2) Are there applications that share the same data topics? Please note, that when a first analysis
shows that two software artifacts have the same data topics, a further differentiated analysis is
recommended, as it may indicate data redundancy.

A function topic represents a prototypical function. Examples include “print document”,
“create price list”, or “compute account balance”. When two software systems use the same
function topic, one should check if there exists one implementation, or rather multiple ones. So
the concept supports the following analysis purposes: (1) What functions are not yet covered
by existing artifacts? (2) Do we have different systems covering the same functions?

Similarly, an event topic represents a prototypical event. Example event topics include “account
overdrawn”, or “payment canceled”. When two applications generate the same event topic,
one should clarify, if one deals with the same event type. If this is the case, one should analyze,
if the according concrete events can also be generated by outside systems, for example by a
workflow management system, and which operations or processes the concrete events trigger.
When an event triggers different processes, this can hint at redundant processes, functions or –
in a related manner – a problem with consistency.

3.4 IT Architecture

Finally, the notion of IT architecture is of interest to IT management, especially to gain an
abstract overview of those aspects of an IT infrastructure that are of high relevance in light of
certain design objectives. At the same time, for an IT architecture one should focus on invariant
aspects, less likely to be subject to change.

44

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 3.13 shows an ITML meta model excerpt, which allows for modeling diverse sets of IT
architectures. IT architectures contain groups (Clusters) of software systems and hardware
components. Clusters may depend on other clusters (cf. ArchitectureDependency). The
design goals and principles, which an IT architecture should satisfy, can be documented in a
corresponding Architecture Pattern (ArchitecturePattern).

Figure 3.13: Meta Model Excerpt: IS Architecture, and Clusters, for constraints, cf. Tab. 3.7

Table 3.12: Language specification: Comments on Cluster, cf. Fig. 3.13
Concept: Cluster Description: Describes logical groupings of Hardware/Software elements, as a

pre-requisite for describing architectural patterns.
Subtypes
PlatformCluster, PersistencyCluster, SoftwareCluster, PeripheralsCluster, ServiceCluster
Attributes on the type level
name String Allows for assigning a type name. Note that the name

should be unique within the context of a cluster type.
description String Allows for providing a description of a cluster type, e.g.,

main focus or a reason for grouping.
internal-
Coupling

OrdinalAssessment Serves the assessment (on the ordinal scale) of the internal
coupling within the cluster type.

common String Allows for specifying the common property or element of
the elements being part of the cluster type.

expectChange OrdinalAssessment Serves to specify the assessment of the expected level of
change within the cluster type.

Continued on next page

45

3 Language Design: Abstract Syntax and Semantics

Table 3.12 – Continued from previous page

[d] numOfSystems Integer Provides information on the number of elements/exem-
plars/... being part of the cluster type.

Associations
partOf 0,* – 0,1 with self
dependsOn

relatesTo

1,1 – 0,*
0,* – 1,1

via AssociationClass ArchitectureDependency with
self. ArchitectureDependency through the following
properties allows to capture: necessity of the dependency
(necessary: Boolean), its substitutability (substituable :
Boolean) as well as effort required to do that (substitu-
tionEffort: OrdinalAssessment), in case substitutability is
possible.

Constraints
CA1 A cluster cannot depend on itself.
CA2 A cluster cannot be part of itself.
CA3 At least one artifact supporting persistency needs to be part of a Persistency Cluster.
CA4 At least one (software) artifact needs to be part of a Software Cluster.
CA5 If the architecture dependency can be substituted, the expected substitution

effort should be stated.

Table 3.13: Language specification: Comments on IS Architecture, cf. Fig. 3.13
Concept:
IS Architecture

Description: used to represent the structure of an IS
in terms of its functional units, and how these units interact.

Attributes
name String Allows for assigning a name to the IS Architecture type.
adaptability OrdinalAssessment Allows to specify the assessed level of adaptability of the

IS Architecture type using an ordinal scale.
scalability OrdinalAssessment Allows to specify the assessed level of scalability of the

IS Architecture type using an ordinal scale.
maintainability OrdinalAssessment Allows to specify the assessed level of maintainability of

the IS Architecture type using an ordinal scale.
availability OrdinalAssessment Allows to specify the assessed level of availability of the

IS Architecture type using an ordinal scale.
Associations
comprises 1,1 – 0,* with Cluster.
follows 0,* – 0,1 with ArchitecturePattern.

46

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.14: Language specification: Comments on Architecture Pattern, cf. Fig. 3.13
Concept:
Architecture-
Pattern

Description: A language level type allowing to specify the core features of an
architecture pattern that may be followed by an information system’s architec-
ture.

Attributes
name String Allows for assigning an architectural pattern a name.
focus String Allows for defining the focus of the architecture pattern,

e.g., selection and composition of information systems.
motivation String Allows for stating the motivation of the architecture pat-

tern.
objectives String Allows for stating the objectives of the architecture pattern.
rules String Allows for defining rules one should follow while using

the pattern.
tradeOffs String Allows to state existing trade offs that should be consid-

ered if a given pattern is followed.

3.5 Integrated IT Infrastructure and Action System Analysis

The concepts offered by ITML are designed to support analyses relevant to IT management.
However, to address some analysis questions models of the enterprise action system are re-
quired in addition to IT infrastructure models. For example, we require an organizational
structure model in addition to an IT infrastructure model to address questions on IT infrastruc-
ture ownership or responsibility.

Taking that into account, the ITML meta model is linked with concepts from other MEMO
DSMLs: OrgML Business Processes and Organizational Structure (Frank 2014b), GoalML for
Goal Modeling (Overbeek, Frank, and Köhling 2015), as well as DecisionML for Decision
Modeling (Bock 2015). The excerpt from the meta model which shows the connections to the
concepts from the other MEMO DSMLs is presented in Fig. 3.14.

Firstly, SpecificSupport (cf. Fig. 3.14) is used to create a bridge between elements
of IT infrastructure and, respectively, business process (AnyProcess), a business goal
(AbstractGoal), or a decision scenario (DecisionScenario) (the concept UseContext
is used here as a surrogate). Secondly, Specific Support can be linked to the concepts
FunctionTopic and DataTopic. As such, not only can we establish a link from IT in-
frastructure elements to elements of the enterprise action system (a process, decision scenario,
or goal), but we can also establish a link to required functionality, or analyse the involvement
of some data. Finally, with the attributes of specific support we can characterize the nature
of the cross-model relation in terms of: relevance, supportQuality, dependency, and

47

3 Language Design: Abstract Syntax and Semantics

performance. Thus, the introduced concepts serve the following analysis purposes: What
contexts are supported? How good is the support? How much does a use context depend on
the software?

Specifically, consider the conjoint use of a business process model and an IT infrastructure
model. This allows to conduct an assessment of the extent to which the (core) business processes
rely on the IT infrastructure. Also, we can identify critical business/IT services. Knowing
which services are critical allows to investigate further the IT infrastructure supporting those
services, i.e., used systems and hardware. One can also analyze what functionalities are needed,
as well as what data is being used, if relevant.

Figure 3.14: Meta Model Excerpt: Integration with other MEMO DSMLs, for constraints, cf. Tab. 3.7

Additionally, considering the conjoint use of goal models and IT infrastructure models, it is
possible to state to what extent the given element of the IT infrastructure supports/hinders
the achievement of defined goals (by looking at the defined attributes, e.g., relevance or
dependency). One may also investigate what function exactly (FunctionTopic) or what data
(DataTopic) are here of interest.

48

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.15: Language specification: Comments on Specific Support, cf. Fig. 4.10
Concept: Specific

Support

Description: Language Level Type allowing for relating elements of the ITML
to be related to elements of DecisionML, OrgML and GoalML.

Attributes
relevance OrdinalAssessment Serves the assessment (on the ordinal scale) of the esti-

mated relevance of the IT artifact and functionalities pro-
vided by it to the Business Process, Goal or a Decision
Scenario, in question.

supportQuality OrdinalAssessment Allows stating the estimated quality of the support pro-
vided.

dependency OrdinalAssessment Serves to specify the assessment of the dependency, i.e.,
to what extent is the execution of a business process or
achievement of a goal dependent on the IT artifact and
functionalities provided by it.

description String Allows to provide additional characteristics of interest.
Selected Associations
for 1,1 – 1,1 Allows to state the context of usage, i.e., point to a process,

goal or a decision scenario, dependent on an IT artifact.
uses 1,1 – 0,* and further refersTo (0,* – 1,1) DataTopic allows to point

to data (and their usage characteristics, i.e., extent and
type of usage) used (e.g., used by a process, or required to
accomplish a goal).

provides (source:
FunctionTopic, Tar-
get: SpecificSupport)
provides (source:
IT Artifact, Target:
SpecificSupport)

1,1 – 0,*
1,1 – 0,*

It is possible to state what IT artifact and what functionality
(FunctionTopic) is being provided.

Constraints, for the OCL definition see Tab. 3.7
CI1 A function topic assigned to a specific support needs to be one covered by an IT

artifact providing the specific support.
CI2 A data topic related to a specific support needs to be one covered by an IT artifact

providing the specific support.

Finally, by using the concept IT Involvement, one can detail what is the involvement of
organizational units, OrganizationalUnit (OrgML), e.g., by using the RACI dependencies
(responsible, accountable, consulted, informed), when it comes to different IT artifacts (e.g.,
Software, SpecificPlatform or Service). One can also show how different units of
work are involved in the management of IT infrastructure, and identify problems that result
out of the incorrect division of responsibilities (e.g., different organizational units involved in
the maintenance process).

49

3 Language Design: Abstract Syntax and Semantics

Figure 3.15: Auxiliary Types

50

IT Modeling Language (ITML): A DSML for Supporting IT Management

3.6 Auxiliary Types

In addition to the central concepts of the modeling language, the meta model also contains
a large number of auxiliary types. These auxiliary types are used to make attributes of meta
types semantically richer than the basic data types available in the MEMO MML. The use of
the auxiliary types enables the option to further differentiate the description of a meta type at a
later point in time without having to adapt the meta types. The referenced auxiliary types are
listed below. The supporting types are defined as Language Level Types, as they are specified
on the meta level, but can only be instantiated once on the type level.

∙ the abstract auxiliary type Assessment is used as an abstraction over various assessment
possibilities, characterized by various degrees of formalization, i.e., from simple true /
false determinations (BooleanAssessment) to ordinal scales (e.g., from “very low” to
“very high”, or as some specific categories of, e.g., availability assessment, e.g., “0%–20%”
to “90%-100%”; OrdinalAssessment), to cardinal scales (CardinalAssessment). It
is recommended to use a dedicated specialized type of the assessment, and apply the
abstract type Assessment only if the actual type of assessment cannot be determined;

∙ the abstract auxiliary type Value and its numerous specializatons are used to specify
values on a nominal, ordinal or cardinal scale. A cardinal value (i.e., measured value
and corresponding measurement units) encompasses such specific types as, among
others, DimensionValue, WeightValue, ClockRateValue, MemorySizeValue,
BandwidthValue or MonetaryValue. Similarly like in case of Assessment, it is
recommended to use specialized types and apply the abstract Value type, only if the
actual type cannot be determined yet;

∙ CommunicationProtocol – serves to indicate and describe characteristics of commu-
nication protocols. Communication protocols are defined as an enumeration list (e.g.,
Transmission Control Protocol (TCP), Internet Protocol (IP), User Datagram Protocol
(UDP), Post office Protocol (POP), Simple mail transport Protocol (SMTP), File Transfer
Protocol (FTP), Hyper Text Transfer Protocol (HTTP)).

∙ DataEncryption – serves to define data encryption standards (e.g., Triple DES, RSA,
Twofish, Elliptic Curve Cryptography (ECC), The Advanced Encryption Standard (AES)),
and their relevant characteristics.

∙ TransportEncryption – serves to define transport encryption standards (e.g., HTTPS,
SSL, TLS) and their relevant characteristics.

∙ NetworkTopology – serves to define topologies of network (e.g., point-to-point, bus,
star, ring, mesh, tree, hybrid, daisy chain) and their relevant characteristics.

51

3 Language Design: Abstract Syntax and Semantics

∙ MiddlewareType – serves to define middleware types(e.g., message-oriented, object
request broker, remote procedure call, enterprise service bus, enterprise application
integration, data integration, database-oriented middleware, transaction-oriented mid-
dleware) and their relevant characteristics.

∙ LifeCyclePhase is used to indicate the phase of the lifecycle a given artifact is in, e.g.,
installation and check-out, operation and maintenance, retirement .

∙ AuthenticationType is used to indicate the type of authentication used, e.g., pass-
word, multi-factor, certificate-based, biometric, token-based.

∙ AccessMode used to indicate the mode of access, i.e., read, write, read/write, admin.

∙ OS-Family used to indicate the root family the operating system type belongs to, e.g.,
windows OS, Unix, Linux, z/OS, or Mac OS.

∙ DBParadigm is used to describe a database paradigm, currently in the form of an
enumeration, e.g. relational, object-oriented, hierarchical.

∙ ProgrammingLanguageParadigm is used to describe a programming language
paradigm (e.g., object-oriented, procedural, functional, logic and constraint).

∙ FrequencyType supports the description of a frequency in various degrees of formal-
ization, e.g., in the simplest form as an enumeration list with the following values: rarely,
often, very often, once per day, once per week, once per month, once per period, every
few hours.

∙ InvolvementType enables a more detailed qualification of the participation of an
organizational unit, for example in text form or with reference to, e.g., RACI matrix.

∙ ServiceStatusCategory is used to describe different categories of a status a service
may have.

3.7 Constraints

As already mentioned, whenever possible, we formulate the constraints using the Object
Constraint Language. If the constraint in question cannot be expressed using OCL, because it
actually spans both type and instance level, we formulate it using a natural language instead.
The following table encompasses all constraints defined within the ITML meta model.

52

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.16: Constraints
ID OCL Natural language
CA1 context ArchitectureDependency inv:

𝑠𝑒𝑙𝑓.𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟 <> 𝑠𝑒𝑙𝑓.𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟

A cluster cannot have an architectural depen-
dency to itself.

CA2 context Cluster inv:
𝑠𝑒𝑙𝑓.𝑝𝑎𝑟𝑡 <> 𝑠𝑒𝑙𝑓

A cluster cannot be part of itself.

CA3 context PersistencyCluster inv:
𝑠𝑒𝑙𝑓.𝐹 𝑖𝑙𝑒𝑆𝑦𝑠𝑡𝑒𝑚− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

OR 𝑠𝑒𝑙𝑓.𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

At least one artifact supporting persistency
needs to be part of a Persistency Cluster.

CA4 context SoftwareCluster inv:
𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() OR
𝑠𝑒𝑙𝑓.𝐿𝑖𝑏𝑟𝑎𝑟𝑦− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

At least one (software) artifact needs to be part
of a Software Cluster.

CA5 context ArchitectureDependency inv:
(𝑠𝑒𝑙𝑓.𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑎𝑏𝑙𝑒 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝐸𝑓𝑓𝑜𝑟𝑡− > 𝑛𝑜𝑡𝐸𝑚𝑡𝑝𝑦())

AND (𝑛𝑜𝑡(𝑠𝑒𝑙𝑓.𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑎𝑏𝑙𝑒) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝐸𝑓𝑓𝑜𝑟𝑡− > 𝑖𝑠𝐸𝑚𝑡𝑝𝑦())

If the dependency is substituable, the expected
substitution effort needs to be stated. If not, it
should not be stated.

CI1 context SpecificSupport inv:
𝑠𝑒𝑙𝑓.𝐼𝑇 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝐼𝑇 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡.𝑇𝑜𝑝𝑖𝑐− >

𝑒𝑥𝑖𝑠𝑡𝑠(𝑠𝑒𝑙𝑓.𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑝𝑖𝑐)

A function topic assigned to a specific sup-
port needs to be also covered by an IT arti-
fact providing the specific support. Please note
that IT Artifact is used here as a surrogate for
Software, Service, PeripheralDevice.

CI2 context SpecificSupport inv:
(𝑠𝑒𝑙𝑓.𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

(𝑠𝑒𝑙𝑓.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() 𝑎𝑛𝑑

𝑠𝑒𝑙𝑓.𝑟𝑒𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()) 𝐴𝑁𝐷

((𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() 𝑎𝑛𝑑

𝑠𝑒𝑙𝑓.𝑟𝑒𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝑟𝑒𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐴𝑙𝑙(𝑑|𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒.𝑟𝑒𝑎𝑑𝑇𝑜𝑝𝑖𝑐− >

𝑒𝑥𝑖𝑠𝑡𝑠(𝑑)) 𝑎𝑛𝑑 ((𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑎𝑛𝑑 𝑠𝑒𝑙𝑓.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦())

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑠𝑒𝑙𝑓.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐴𝑙𝑙(𝑑|𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑇𝑜𝑝𝑖𝑐− >

𝑒𝑥𝑖𝑠𝑡𝑠(𝑑)) 𝑎𝑛𝑑 ((𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑎𝑛𝑑 𝑠𝑒𝑙𝑓.𝑟𝑒𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦())

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑠𝑒𝑙𝑓.𝑟𝑒𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐴𝑙𝑙(𝑑|𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒.𝑟𝑒𝑎𝑑𝑇𝑜𝑝𝑖𝑐− >

𝑒𝑥𝑖𝑠𝑡𝑠(𝑑)) 𝑎𝑛𝑑 ((𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑎𝑛𝑑 𝑠𝑒𝑙𝑓.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦())

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑠𝑒𝑙𝑓.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐴𝑙𝑙(𝑑|𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒.𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑇𝑜𝑝𝑖𝑐− >

𝑒𝑥𝑖𝑠𝑡𝑠(𝑑))

A data topic related to a specific support
needs to be also covered by a Software or
a Service providing the specific support.
Please note that if a support is provided by a
peripheral device, no data topics are assigned.

Continued on next page

53

3 Language Design: Abstract Syntax and Semantics

Table 3.16 – Continued from previous page

ID OCL Natural language
CI3 context IT Involvement inv:

𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑒𝑙𝑓.𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐷𝑒𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑠𝑒𝑙𝑓.𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑠𝑒𝑙𝑓.𝑀𝑖𝑛𝑖𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚− >

𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

IT Involvement needs to pertain to one of the
following artifacts: MiniSpecificPlatform,
SpecificPlatform, HardwareDevice,
Serivce, or Software.

CI4 context SpecificSupport inv:
𝑠𝑒𝑙𝑓.𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑠𝑒𝑙𝑓.𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

𝑋𝑂𝑅 𝑠𝑒𝑙𝑓.𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

Specific specific support is provided by only
one of the following: Service, Software, or
PeripheralDevice.

CT1 context Topic inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝑇𝑜𝑝𝑖𝑐− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A topic cannot use itself.

CT2 context Topic inv:
(𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐸𝑎𝑐ℎ(𝑡|𝑡.𝑜𝑐𝑙𝑠𝑇𝑦𝑝𝑒𝑂𝑓)𝑠𝑒𝑙𝑓))

A topic can use only topics of the same type as
it is.

CT3 context Topic inv:
𝑠𝑒𝑙𝑓.𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇𝑜𝑝𝑖𝑐− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A topic cannot include itself.

CT4 context Topic inv:
(𝑠𝑒𝑙𝑓.𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇𝑜𝑝𝑖𝑐− >

𝑓𝑜𝑟𝐸𝑎𝑐ℎ(𝑡|𝑡.𝑜𝑐𝑙𝑠𝑇𝑦𝑝𝑒𝑂𝑓(𝑠𝑒𝑙𝑓))

A topic can include only topics of the same type
as it is.

CT5 context FunctionSimilarityAssessment inv:
(𝑠𝑒𝑙𝑓.𝑓𝑟𝑜𝑚𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 <> 𝑠𝑒𝑙𝑓.𝑡𝑜𝐹𝑢𝑛𝑐𝑡𝑜𝑛)

A function topic cannot be similar to itself.

CP1 context Platform inv:
(𝑠𝑒𝑙𝑓.𝑀𝑖𝑛𝑖𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚− > 𝑛𝑜𝑡𝐸𝑚𝑡𝑝𝑦()

𝑥𝑜𝑟 𝑠𝑒𝑙𝑓.𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

A platform type may be part of at least one
specific platform or mini specific platform.

CP2 – An Application and system software only runs
on (runsOn) specific, specific platforms on
whose types the software can be executed
(executableOn).

CP3 – A virtual machine cannot run on a virtual ma-
chine it is realizing.

CP4 – CPU only mounts to (mountedOn) specific
hardware platforms whose types the CPU
fits.

CP5 – A specific mounted rack mounts on specific
racks on whose types it is mountable on.

CP6 – An instance of platform being part of a specific
specific platform must be of type defined by the
partOf relation on the type level.

CP7 – An instance of an operating system assigned to
a specific specific platform needs to be of type
defined by a partOf relation on the type level.

Continued on next page

54

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.16 – Continued from previous page

ID OCL Natural language
CP8 – An instance of platform being part of a specific

mini specific platform must be of type defined
by the partOf relation on the type level.

CP9 – A specific hardware platform can be built into
a specific case that it fits (defined on the type
level).

CH1 – A hardware device may be connected to a spe-
cific platform being an instance of a type of
a specific platform that a hardware device in
question is connectable to.

CH2 – A specific platform may access a hardware de-
vice being an instance of a type that a platform
may have access to.

CH3 – A software uses a hardware device being an
instance of a type that it requires.

CS1 context Software inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A software artifact cannot use itself.

CS2 context Software inv:
𝑠𝑒𝑙𝑓.𝑝𝑎𝑟𝑡− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A software cannot be part of itself.

CS3 context SoftwareCommunicationRelation:
𝑠𝑒𝑙𝑓.𝑟𝑒𝑓𝑒𝑟𝑒𝑑𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 <> 𝑠𝑒𝑙𝑓.𝑟𝑒𝑓𝑒𝑟𝑒𝑒

Software cannot communicate with itself.

CS4 context Vendor inv:
𝑠𝑒𝑙𝑓.𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

An organization being a vendor cannot be a
competitor to itself.

CS5 context Vendor inv:
𝑠𝑒𝑙𝑓.𝑝𝑎𝑟𝑡𝑛𝑒𝑟− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

An organization being a vendor cannot be a
partner to itself.

CS6 context Software inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝑀𝐼 <> 𝑠𝑒𝑙𝑓.𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑀𝐼

Software cannot use the middleware interface
it defines.

CS7 – A specific software can be stored only on (in-
stance level) replication files that this type of
software is storable on (type level).

CS8 context Software inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝐿𝑖𝑏𝑟𝑎𝑟𝑦− >

𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓.𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔𝐿𝑖𝑏𝑟𝑎𝑟𝑦)

Software cannot use a library that it represents.

CS9 context Service inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝐴𝑃𝐼− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓.𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝐴𝑃𝐼)

A Web service cannot use and provide the same
API.

CS10 context Service inv:
𝑠𝑒𝑙𝑓.𝑢𝑠𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A service cannot use itself.

CS11 context Service inv:
𝑠𝑒𝑙𝑓.𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

XOR 𝑠𝑒𝑙𝑓.𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔𝑊𝑆− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

An API can be either provided by a Software or
by a Web service.

CS12 context SoftwareCommunicationRelation inv:
𝑠𝑒𝑙𝑓.𝐴𝑃𝐼− > 𝑓𝑜𝑟𝐴𝑙𝑙(𝑎|𝑎.
𝑜𝑐𝑙𝐼𝑠𝑇𝑦𝑝𝑒𝑂𝑓(𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠𝐴𝑃𝐼) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝑖𝑠𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠)

Communication relation – if asynchronous API
is attached, the the attribute isAsynchronous
needs to be set to true.

Continued on next page

55

3 Language Design: Abstract Syntax and Semantics

Table 3.16 – Continued from previous page

ID OCL Natural language
CS13 context Component inv:

𝑠𝑒𝑙𝑓.𝑤𝑟𝑎𝑝𝑝𝑒𝑑𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A component cannot wrap itself.

CS14 context SoftwareCommunicationRelation inv:
𝑠𝑒𝑙𝑓.𝐴𝑃𝐼− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝑠𝑒𝑙𝑓.𝐴𝑃𝐼− > 𝑓𝑜𝑟𝑎𝑙𝑙(𝑎|𝑠𝑒𝑙𝑓.𝑟𝑒𝑓𝑒𝑟𝑒𝑑𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒.

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝐴𝑃𝐼− > 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠(𝑎))

Communication relation – using an API that
referred or referee software provides.

CN1 – A specific network can be protected only by
specific network firewall (instance level) that is
suited for this network (type level).

CN2 – A specific network can be used by a specific Spe-
cific platform (instance level) only if this specific
platform on a type level may have access to it.

CN3 – A specific personal firewall protects a specific
specific platform (instance level), if a personal
firewall type is suited for this specific platform
type.

CD1 context Component inv:
𝑠𝑒𝑙𝑓.𝑒𝑛𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑛𝑔𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡− > 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝑠𝑒𝑙𝑓)

A component cannot be part of itself.

CD2 context ContainerImage inv:
𝑠𝑒𝑙𝑓.𝑊𝑒𝑏𝑆𝑒𝑟𝑣𝑖𝑐𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦() XOR
𝑠𝑒𝑙𝑓.𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦

XOR 𝑠𝑒𝑙𝑓.𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒− > 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦()

A container image may be boundling only one
artifact.

3.8 Requirements and Their Fulfillment

In this section, we reflect upon the extent to which the ITML as discussed thus far fulfills the
requirements as they have been introduced in Chapter 2.

56

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.17: Requirements and their fulfillment
Requirement Comment
R1: The ITML should provide differentiated con-
cepts supporting comprehensive modeling IT in-
frastructure elements, their properties and depen-
dencies between different elements, both on the
type-level as well as instance-level.

As we have used MEMO Meta Modeling Language, we
have used intrinsic properties (attributes and relations) to
account for both type and instance-level information. This
allowed us to account for both, e.g., average performance
of some IT artifact, as well as its actual performance or
date of usage, or when it comes to relations, e.g., point
that while some software is on the type level executable
on some type of a specific platform, a specific instance of
software runs on a specific instance of a specific platform.
Nevertheless, while accounting for this requirement we
also faced numerous challenges and limitations which may
be traced back to the language architecture used, for details
please see Chapter 5.

R2: The ITML should provide differentiated con-
cepts supporting comprehensive modeling of hard-
ware platforms and associated concepts.

Next to providing an explicit conception of
HardwarePlatform (specified in terms of attributes
such as actMemory, and having an association with
one or more CPUs), HardwarePlatform is also differ-
entiated explicitly from other platform types, such as
a VirtualPlatform, and (specific to the notion of a
container), a MiniSpecificPlatform.

R3: The ITML should provide differentiated con-
cepts supporting comprehensive modeling of soft-
ware artifacts and related concepts.

A hierarchy of software artifacts has been created,
whereby different types of software are modeled as
subtypes of, either, directly the abstract meta type
Software (like ApplicationAndSystemSoftware),
or (generally speaking) as siblings of the subtype
Software (like ApplicationSoftware, being a sub-
type of ApplicationAndSystemSoftware).

R4: The ITML should provide differentiated con-
cepts supporting comprehensive modeling of IT
services.

A notion of Service, in an IT-context, has been modeled,
and has been related to directly important concepts such
as a ServiceContract.

R5: The ITML should provide differentiated con-
cepts supporting comprehensive modeling of hard-
ware devices (e.g., peripheral devices).

Two subtypes of an abstract meta type HardwareDevice
have been distinguished. Next to PeripheralDevice

(which in turn has its subtypes like Printer) we also
distinguish the subtype InfrastructuralHardware,
mostly to point to hardware devices which provide a net-
work access.

R6: The ITML should provide differentiated con-
cepts supporting comprehensive modeling of other
elements of IT infrastructure, such as network or
data storage.

Next to aforementioned main types of respectively soft-
ware or hardware, additional IT infrastructure concepts
needed for analysis purposes, like network and related
concepts, library, agreement, etc. have been accounted
for. To support other than considered analysis scenarios,
additional concepts may be required.

Continued on next page

57

3 Language Design: Abstract Syntax and Semantics

Table 3.17 – Continued from previous page

Requirement Comment
R7: The ITML should express properties of differ-
ent IT infrastructure concepts as they are part of
the professional IT infrastructure discourse.

Several properties have been defined for IT infrastruc-
ture concepts to differentiate them according to the anal-
ysis needs. Furthermore, the ITML caters for auxiliary
data types to provide further differentiation for said
properties, such as the auxiliary type Assessment or
MonetaryValue.

R8: The ITML should allow to model dependencies
among various elements of the IT landscape.

Various kinds of dependencies have been catered for, de-
pending on the analysis needs / needs for semantic differ-
entiation. Additionally, for dependencies which introduce
cycles (as is the case for reified associations), where needed,
constraints have been introduced to avoid models, which
are not permissible.

R9: The ITML should account for supporting ba-
sic analysis related to authorization, authentication
and confidentiality. To this aim relevant properties
of IT artifacts, their interactions, as well as dedi-
cated concepts and their configuration, should be
accounted for.

From a technical perspective, security related aspects
have been accounted for in terms of attributes like
dataEncryption (for various ITML concepts), or dedi-
cated security concepts such as Firewall. However, as
mentioned in Section 3.2 human factors regarding security
are not taken into consideration.

R10: The ITML should account for supporting basic
analysis of maintainability of the IT infrastructure.
Thus, it should account for architectural informa-
tion as well as dependencies among elements of
IT landscape allowing to analyze the impact of a
modification.

To account for this requirement, firstly, a set of attributes
has been accounted for, e.g., pointing to the availability
of the source code and documentation, version of the sys-
tem. Secondly, through defined dependencies one can
learn what language has been used for the implementa-
tion, what APIs/Libraries/Other Software Artifacts are
used/required, and many more.

R11: The ITML should account for additional rela-
tionships reflecting various dependencies between
IT artifacts supporting a portability analysis.

Various semantically rich types of relations have been
added in support of portability analysis, both on the
type as well as on the instance level. For example,
to state that a HardwareDevice is connectableTo

a SpecificPlatform (on the type level), or that
a HardwareDevice is connectedTo a specific
SpecificPlatform (on the instance level).

R12: The ITML should account for characteristics
of IT artifacts supporting portability analysis (e.g.,
constraining characteristics, usage of standards).

Where appropriate, the concepts in the ITML have vari-
ous characteristics which allow for a portability analysis
(like the attribute isMobile of PeripheralDevice). Of
additional note is the notion of a container, and related
concepts, which - by providing resources needed for an
application to run - also supports portability.

R13: The ITML should express estimated perfor-
mance of IT landscape elements, whereby a speci-
fication of performance depends on the type of IT
landscape element.

For all concepts, relevant attributes, e.g.,
avgPerformance, actPerformance, have been
defined.

R14: The ITML should express availability charac-
teristics of IT landscape elements.

The required attributes to express availability have been
included in the definition of relevant concepts.

Continued on next page

58

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table 3.17 – Continued from previous page

Requirement Comment
R15: The ITML should provide concepts delivering
information required for the needs of conducting a
basic vendor analysis.

We explicitly define a Vendor as well as dependencies
such as competitor or partner. By using a has rela-
tionship one can attach a vendor to software and hardware
artifacts, including a platform.

R16: The ITML should explicitly account for data
and file formats as well as implementation lan-
guages of different IT infrastructure elements.

The ITML encompasses an elaborate conception of differ-
ent types of languages, including concepts to express the
implementation language used. Additionally file and data
formats are accounted for.

R17: The ITML should distinguish different types
of middleware and corresponding relationships to
other IT artifacts.

For the meta type Middleware we can express dif-
ferent types of middleware through the attribute
type: MiddlewareType. Additionally several dif-
ferentiating associations have been accounted for, like
ApplicationServer and WebServer being part of a
Middleware.

R18: The ITML should explicitly account for ab-
stractions of the used data structures, allowing for
classification of processed data, and provide means
to model data flow in the system.

As part of an elaborate conception of different topic types,
the meta type DataTopic allows for an abstraction of the
used data structures.

R19: The ITML should explicitly account for func-
tions covered by IT artifacts belonging to the IT
landscape. It should be possible to relate software
artifacts to functions (e.g., function topics) that they
cover. Finally, it should be possible to state assessed
similarity between functions.

As part of an elaborate conception of different topic types,
the meta type FunctionTopic allows for an abstrac-
tion of the used functions. In addition, using a con-
cept FunctionSimilarityAssessment we may state
whether some function topics are similar.

R20: The ITML should explicitly account for inter-
faces and functionalities offered by IT artifacts.

The ITML specifically offers the meta types (1) API

for a Software, and (2) MiddlewareInterface for
Middleware. Relevant associations are offered as well.

R21: The ITML should allow to link elements of IT
landscape and processes they support. The char-
acteristics of the support provided should be ac-
counted for.

Through the Language Level Type SpecificSupport

and its attributes like supportQuality, an association of
ITML concepts to concepts from OrgML for business pro-
cesses is possible (through AnyProcess).

R22: The ITML should allow to relate IT landscape
elements to goals of an organization, in terms of the
influence of these elements on goal achievement.
The characteristics of the influence provided should
be accounted for.

Akin to R21, through both SpecificSupport and
AbstractGoal a semantically rich relation can be estab-
lished between the ITML and concepts from the GoalML.

R23: The ITML should allow to link elements of
IT landscape with organizational units and express
the role of linked organizational units.

The ITML can be related to an organizational unit as ex-
pressed in OrgML for structures through the Language
level Type IT involvement. IT involvement also allows
to express the specific responsibilities of an organizational
unit.

59

4 Language Design: Concrete Syntax and ITML Diagram Types

4 Language Design: Concrete Syntax and ITML Diagram

Types

In this chapter, first, the concrete syntax of ITML is introduced and different diagram types
are discussed. The chapter concludes with providing a set of guidelines for modeling and
designing IT infrastructure.

4.1 Concrete Syntax

While the concrete syntax of a modeling language is considered by some as “syntactic sugar”,
which is of little relevance only, we assume that the graphical representation shown with a
diagram is of considerable relevance for the comprehensibility and acceptance of the underlying
model. That is why we paid a lot of attention to the design of the concrete syntax and also
hired a professional graphic designer.

Figure 4.1 shows selected symbols used to represent the language concepts of extended ITML.
With the design of the concrete syntax, we follow the guidelines proposed by a method for the
design of DSML (Frank 2010, p. 48 ff.) that build on and extend the guidelines from Moody
(2009) for designing visual notations. Moody’s guidelines include semiotic clarity, perceptual
discriminability, semantic transparency, visual expressiveness and graphic economy. For example,
semantic transparency implies that the meaning (semantics) of a symbol is clear (transparent)
from its appearance alone (cf. the visualization of peripheral devices, Fig. 4.1). In turn, the
method proposed by Frank (2010), suggests, among others, to define semantic categories
of concepts and use generic symbols for each category, cf. Guideline 1 and 2 (Frank 2010,
p. 50), as well as to use composition of symbols by adding features in a monotonic fashion,
cf. Guideline 8 (Frank 2010, p. 52). For instance, having a look at the visualization of the
virtual specific platform with UNIX, it has been created by putting together a symbol of virtual
machine, operating system and a desktop symbol.

While these guideline proved to be useful, they still leave room for demanding decisions.
For example, the proposal to distinguish semantic categories does not clearly determine the
definition of categories. While a category like, e.g., Software is intuitively distinguishable from
the category Hardware, that does not necessarily mean to not subdivide software into further

60

IT Modeling Language (ITML): A DSML for Supporting IT Management

Figure 4.1: Selected concepts and their visualization, for a complete list of concepts, see Appendix A

61

4 Language Design: Concrete Syntax and ITML Diagram Types

Figure 4.2: Exemplary Decorations supporting dedicated analysis

categories. Indeed, such a subdivision turned out to be necessary, taking into account the
sheer number of concepts being software artifacts, as well as considering existing differences
between those (e.g., cf. the visualization of Middleware vs. the visualization of Workflow
Management System, Fig. 4.1).

Finally, please note that, as shown in Fig. 4.2, to support more specific analysis the basic
symbols are enhanced with additional, context-specific symbols. For instance, in Fig. 4.2 we
indicate that this a mission critical application, being in use, and having a high user satisfaction
and performance.

4.2 Selected ITML Diagram Types

The ITML proposed in this report allows for creating a few diagram types, among others, the
IT Infrastructure Diagram, Topic Diagram and Architecture Diagram. Please note that each
diagram type provides a different perspective on the IT infrastructure at hand, and/or shows
the IT infrastructure in conjunction with the surrounding action system. In addition to that,
each type is suited to represent both the current as well as targeted situation, cf. (Kinderen and
Kaczmarek-Heß 2018). The main purposes, key analysis questions and concepts of selected
diagram types are presented subsequently.

4.2.1 IT Infrastructure Diagram

Purpose: The main diagram type is the IT infrastructure diagram. It depicts elements of IT
infrastructure and associations between them, and thus, supports basic analysis of IT landscape
elements, IT-centric as well as integration. In addition, it allows to model an IT landscape and
its connections to business process types as well as organizational structure, thus, the analyses
of organizational assignment as well as IT-business alignment are enabled.

62

IT Modeling Language (ITML): A DSML for Supporting IT Management

Key concepts: specific platform, software and its specializations, service, hardware device and
its specializations, network etc., as well as relations: runs on, provides, uses, communications,
access to etc.

Integrated with the following diagram types: Topic diagram, MEMO Organizational Chart, MEMO
Business Process Control Flow Diagram.

The example in Figure 4.3 illustrates an IT Infrastructure of an exemplary company. The
presented excerpt of the IT landscape diagram illustrates various dependencies between IT
artifacts and services. It also points to the service orientation – the software applications are
providing services/functionalities, which in turn may be used by enterprise stakeholders.

This view however, while it supports the basic analysis, cf. scenarios in Chapter 2, it does
not provide detailed information regarding qualitative or quantitative aspects of IT artifacts.
Therefore, the diagram in Fig. 4.4 shows a more detailed view on the exemplary model. Here

Figure 4.3: Exemplary Diagram

63

4 Language Design: Concrete Syntax and ITML Diagram Types

Figure 4.4: A selected detailed view

selected properties of individual model elements as well, if appropriate, also selected instance-
level information, are provided. Which details should be represented and how exactly the
information should be visualized/shown depends on the possibilities of a meta modeling
platform used to create a corresponding modeling tool. For instance, the ADOxx meta modeling
platform (Fill and Karagiannis 2013) that is used in our case to implement the ITML, allows
to define different views on a model created, supporting different analysis scenarios (e.g.,
integration analysis vs. security analysis), as well as allows to capture relevant properties in
form of so called Notebook.

A sample of typical analysis questions that can be answered on the basis of an IT Infrastructure
diagram, as partly visualized in Fig. 4.3 and Fig. 4.4, are as follows:

∙ What is the heterogeneity of the IT infrastructure, in the sense of the different types of
platforms and different types of operating systems?

– Which types of platforms are there?

– Which types of an operating system is running on a given platform type?

64

IT Modeling Language (ITML): A DSML for Supporting IT Management

∙ Questions regarding the basic characteristics of a software, e.g.:

– How many licenses for the given type of the application software are available?

– What is the type of the license and its cost?

– In which phase of the life-cycle is the given application?

∙ Which software artifacts have been implemented using some specific language?

∙ Which application types are characterized as critical ones?

∙ Questions regarding the basic characteristics of a platform type:

– How many instances of a given platform type are there?

– When it has been introduced?

– Which operating system type does it have?

∙ Which software type runs on which platform types?

∙ Does some software application type offers some service types?

∙ What is the service-orientation level of our IT infrastructure?

∙ Which application types are running on the same type of a platform?

∙ Which types of peripheral devices are there in an enterprise?

∙ Do the server types belong to the same Local Area Network?

∙ Which databases are used by which application types?

Considering security-relevant concepts (e.g., firewall, network) and their attributes, as well
as relevant relations (e.g., protects, access to), one may perform security related analysis as
follows:

∙ What is the authorization type applied by some specific software artifact?

∙ What is the transport protocol used?

∙ Is the exchanged data encrypted? What is the encryption type?

∙ Is the network protected by a firewall?

Additional attributes of some software artifacts allow to assess qualitative aspects and answer
the following questions:

∙ What is the average user satisfaction with some software type?

65

4 Language Design: Concrete Syntax and ITML Diagram Types

∙ What is the average availability and average reliability of some software type?

∙ What is the code complexity of application software types being used in the enterprise?

∙ How one is assessing its scalability?

Finally, the IT infrastructure diagram allows also to conduct integration analysis. For instance,
looking at Fig. 4.3, as the two DBMS are only used by one software application each, it can be
assumed that the data used or created by those applications is not integrated. Nevertheless,
even if two applications would use the same DBMS, it would not necessarily follow that
the data used in each case is integrated. Rather, it would have to be clarified whether both
applications use the same database, and thus, the same schema. The same applies to software
artifacts that use the same file management system: only if they also use the same files, they
might be accessing the same data. A differentiated analysis would require consideration of
complementary aspects, such as a data model or database schema, so as to determine which
data is read or written by each software. It should also be considered what is the level of
semantics of the used classes or data types, as it makes a difference to the quality of integration
whether two software artifacts only exchange data in the form of bytes or whether they refer to
common classes.

In addition to persistent data, integration also affects the exchange of volatile data between
software artifacts. An indication of the possibility of such an exchange occurs when the
systems in question are connected to the same middleware system. However, that does not
necessarily mean that data between the systems can be actually exchanged. Here, it would
need to be first determined whether the systems access the same interface repository of the
respective middleware. In an interface repository all interfaces are listed, that may be used
to communicate with the middleware and other software artifacts using it. To be able to
evaluate the integration it would be necessary to determine which internal classes of each
involved software artifacts are accounted for in the interfaces in the repository. These details
are not included in an IT infrastructure model, but may be obtained by analysing the respective
interface repositories.

The diagram in Fig. 4.5 focuses on data integration in an IT infrastructure. It shows how
application systems access databases and files. Regarding the former, the structure of the data
is indicated by a reference to a database schema. If the IT infrastructure model is managed
using a corresponding modeling tool, it may be possible to navigate from a symbol representing
a database schema to a representation of the schema, or to navigate to a diagram that contains,
e.g., a corresponding data model. In addition, the diagram in Fig. 4.5 shows two further
integration relevant aspects, namely a shared access to data stored in files and access to an
interface repository. To assess the quality of integration also here additional analyses would
be required, among others, of the definition of a file structure as well as the content of the
interface repository.

66

IT Modeling Language (ITML): A DSML for Supporting IT Management

Please note that the final aim of the conducted integration analysis is to answer the question:
What is the current level of integration and where is the potential for further integration?
Where the lack of integration may threaten the data integrity? Finally, please note that in order
to examine integration deficits, among others, the ITML offers the concept of topics, discussed
in subsequent section.

Figure 4.5: Integration analysis

4.2.2 Topic Diagram and Corresponding Analysis

Purpose: This diagram type allows to define Function Topics, Event Topics, and Data Topics (cf.
Fig. 4.6). It is also possible to define different relations between them, e.g., that a data topic
uses a data topic, as well as data topic includes other data topic.

Figure 4.6: Concrete Syntax: Topics

Please note that the modeled Topics are being referenced within the IT Infrastructure Diagram.
Thus, one may perform analysis regarding different topics distinguished as well as identify
(using the IT Infrastructure Diagram) which elements of IT infrastructure read or write some
specific topic. This allows to perform basic integration analysis, as is also indicated later in this
section.

Key concepts: Data Topic, Function Topic, Event Topic, uses, includes

67

4 Language Design: Concrete Syntax and ITML Diagram Types

Integrated with the following diagrams: IT Infrastructure Diagram

Exemplary questions include:

∙ What data/function/event topics exist?

∙ What are dependencies among various topics?

∙ If used together with an IT Infrastructure Diagram, what integration gaps and deficits
may be identified?

Fig. 4.7 shows an exemplary “Data Topic Map” created based on the collected data (at least
partially modeled in the IT Infrastructure diagram). First data topics need to be collected, then
it is examined in pairs, whether one data topic needs the other. For example, the representation
of an order requires a reference to a customer. Then, for each application system is to be clarified
what read and write access to which data topics it has. Subsequently files and databases used
as well as topics they cover would need to be analyzed as well. Please note here, as already
mentioned by taking advantage of the modeled topics, one may perform analysis supporting
static, functional and dynamic integration of IT landscape. For instance, by analyzing covered
and required functions (function topics) and read and written data (data topics), one may
identify similarities between some software artifacts (e.g., applications offering the same
functionality, or if two software applications are using the same data topics, then there is a data
similarity relation between them).

Figure 4.7: Exemplary Data Topics

4.2.3 Architecture Diagram

Purpose: An IT architecture diagram, compared to other diagram types discussed, features a
higher degree of aggregation, which is made possible by using various specializations of the
language concept Clusters.

Key concepts: Cluster, Architecture Pattern, architecture dependency

68

IT Modeling Language (ITML): A DSML for Supporting IT Management

Integrated with the following diagram types: IT Infrastructure Diagram

Figure 4.8: Exemplary, Conventional Architecture

Figure 4.8 shows a rather conventional IT architecture represented in line with the layered
approach. Various types of application software clusters use clusters of software libraries and
persistence systems. Software as well as persistence clusters are each more or less dependent
on platform clusters. It needs to be stressed that through the aggregation to clusters the
representation of the structure of IT infrastructure is made clearer, but at the cost of a loss
of information. By using different background colors we may represent the phase in the life
cycle of a cluster. If a more detailed view is desired, a cluster can be “decomposed” so that it
individual elements can be investigated.

Figure 4.9: Architecture Example: Distribution and Integration

In turn, Fig. 4.9 represents an architecture focusing on distribution and integration aspects. The
main focus is placed on a middleware cluster, which encompasses several middleware systems
which, among other, include also application servers. Also here, the architecture diagram

69

4 Language Design: Concrete Syntax and ITML Diagram Types

Figure 4.10: Integrated view: example

provides a high-level view on the IT landscape only and allows to obtain an overview of the
most important elements and existing dependencies. Nevertheless, in order to conduct further
analysis, there is a need to drill down in order to assess the relevant details.

4.3 Integration of ITML Diagram Types With Other MEMO Diagram
Types

Next to individual diagram types that each express a different view on the IT landscape
discussed so far, the ITML also offers concepts for establishing a relation to diagram types from
other MEMO DSMLs, which each express a different view on the enterprise action system.

70

IT Modeling Language (ITML): A DSML for Supporting IT Management

An example of such a concept is AnyProcess, cf. (Frank 2014b), which can be used to relate an
ITML diagram type to a business process created in OrgML for business processes.

Establishing such relations between the ITML and diagram types from other MEMO DSMLs
allows for analyses that cut across different views on an organization. Such cross cutting
analyses can be illustrated on the basis of the integrated diagram in Figure 4.10. Here, we
find a relationship between the ITML and the organizational structure diagram. In particular, a
relation is established between the “CRM” application software and the role “CRM operator”.
For a given element of the IT landscape, such a relation to the organizational structure can be
used to assign, e.g., responsibilities or various access rights to roles or particular actors within
the organizational structure.

Next, looking at a relationship between the ITML and the business process diagram, in Fig. 4.10 we
see that a relation is established between the “Thunderbird” and the business process “Inform
customer”, and the services “OrderProduct” and the business process “Check availability of
customer data in the CRM system”. For a given element of the IT landscape, such a relation
allows for, prominently, an impact of change analysis. For example, if the status of the software
would be changed, either through a direct modification, or through a change in the platform
on which the software runs, what business processes in the organization will be affected? Thus,
we can answer questions such as: What is the characteristics of the support provided by some
application/service types to some process type/process type element? Which process types in
the organization are depending highly on the IT infrastructure?

Finally, looking at the established links with the goal system diagram, we may see, e.g., which
elements of the IT infrastructure support organizational goals and what is the characteristics of
such a support (e.g., “Commerce-1” supports realization of the goal “Reduction of processing
time”, cf. Fig. 4.10).

The integration of ITML with other MEMO diagram types can also be used for other kinds
of analysis. For example, inspired by Lankhorst (2013) the relation between an IT landscape
diagram and a business process diagram can equally be used for quantitative analysis of the
resources load on the IT landscape, given a certain amount of business processes executions.

4.4 Selected Design Principles

Although in this research report we focus mainly on the designed language, i.e., ITML, and do
not explicitly address other elements of the modeling method (i.e., process models guiding the
application of the proposed language), in what follows we discuss a few selected guidelines
that should be followed while (re)designing IT infrastructures or describing and analyzing
already existing ones.

71

4 Language Design: Concrete Syntax and ITML Diagram Types

While describing the existing IT infrastructure (e.g., by creating the IT Infrastructure Diagram),
the following three guidelines should be considered.

Guideline 1: Keeping focus and reducing complexity – An IT infrastructure may be of great
complexity, which manifests itself in a considerable heterogeneity of artifact types, a substantial
number of hardware components and software installations, and diverse relationships among
them. Therefore, an important goal of modeling of an existing IT infrastructure is to reduce this
complexity in order to support the users of models in grasping the aspects that are essential
for a particular problem. To do this, it is advisable to provide a list of the requirements for a
specific problem, and use it to derive relevant questions. Against this background, a model
should be designed in such a way that it is suitable to answer these questions or to support
the answering of these questions. At the same time, modeling of additional aspects should be
avoided.

Guideline 2: Differentiation of perspectives – IT infrastructure models can be aimed at different
target groups, each having some specific professional perspective. IT managers, for example,
tend to be less interested in technical details than IT architects or software developers. At the
same time, the IT infrastructure models can also be used as a medium to promote communica-
tion between different target groups. For this purpose, a suitable intersection of the relevant
aspects for the target groups involved should be determined.

Guideline 3: Consideration of selected aspects of the organizational action system – Even if there is a
significant number of questions solely focusing on the IT infrastructure and its characteristics,
the IT infrastructure should not be seen as an end in itself and considered in isolation from
other aspects. Therefore, in many cases it is advisable to consider the relevant context, among
others, models of the organizational action system, e.g., business process models or goal
models. Here, too, one will focus on the questions that are important for certain analysis
purposes (cf. Guideline 1) in order to deduce which aspects are to be included and in which
way.

The following ten guidelines should be considered while (re-)designing and analysing IT
infrastructure. Please note that we focus here on a few general guidelines only, which refrain
from the fact that the scope for design is often considerably restricted.

Guideline 4: Reuse – With regard to the design of software systems, it is necessary to carefully
analyze commonalities and map them using suitable abstractions. If ready-made software
is used, reuse requires an open access to the functionalities that software offers and to the
resources that it manages, so that they may be used by other systems. This concerns their
syntactic representation and their semantics. The investigation of reuse possibilities requires
consideration of already installed systems, as well as the possible use of ‘mediator’ systems,
such as middleware or persistence frameworks.

72

IT Modeling Language (ITML): A DSML for Supporting IT Management

Guideline 5: Integration – A lack of integration is associated with redundancy and complex,
risky communication between software systems. It thus poses a threat to the efficiency and
integrity of IT infrastructure. Next to the integration of data (static integration), the functional
and dynamic (process) integration must also be taken into account. In any case, the integration
of two software systems requires common concepts such as common data types or classes,
common functional interfaces and common event types: this is the only way that an application
can use data, operations or events from another application. In addition, it must be taken into
account that common namespaces for the exchange of individual instances (more precisely: of
references to these) exist or are created. This can be implemented, for example, by a database
whose namespace is presented in the same way to the accessing software systems. In the case
of objects, operations and events, however, this is associated with considerable challenges,
which can usually only be partially overcome. One approach to meet these challenges is to
plan an evolutionary approach, and, e.g., plan that initially only a few applications will be
integrated through databases or middleware systems. Systems to be introduced in the future
should then be selected in such a way that they can be connected via these databases and
middleware systems.

Guideline 6: Dynamic integration – Two software systems are dynamically integrated, if they
have common event types and can access corresponding event instances that were generated
in the other system. Then, it becomes possible to run business processes supported by those
integrated software systems. However, it will most likely make more sense to define and
execute the process in a dedicated system, such as a workflow management system (WFMS).
The dynamic integration can then be limited to the integration of the involved software systems
with the WFMS. This results in the design guideline that, when selecting software systems,
care must be taken to ensure that events that may be significant for the control of a process
can be generated and stored in an event space that is also accessible to other software systems.
Such an event space could for example be offered by a middleware system.

Guideline 7: Synchronization – Subsequent integration is usually only possible to a modest
extent. There may also be reasons for deliberately keeping data redundant, such as high
performance requirements. In such cases, the regular synchronization of data is a measure to
keep the integrity-threatening effect of redundancy within limits.

Guideline 8: Adaptability – It can be assumed that the requirements for an IT infrastructure
will change in time. It should therefore be designed in such a way that it does not hinder any
necessary adjustments. That applies to the effort and risk associated with changes. To this end,
it is advisable to first differentiate between the more likely invariant parts and the parts of
the infrastructure that are likely to change over time. The architecture of an IT infrastructure
should be designed in such a way that variant parts can be dependent on invariants, but
invariants, conversely, are not dependent on variants. In view of the various imponderables
that affect future technical developments, the competitive situation, the development of market

73

4 Language Design: Concrete Syntax and ITML Diagram Types

structures and much more, one must operate here with assumptions. In order to develop
such assumptions, it is useful to consider questions such as “What are invariant aspects of
our business model?”, “Will our product range change and how would this possibly affect
the requirements for the IT infrastructure?”,“What will our service creation processes look
like in the future?”, “With which actors will we work in the future?”. In addition, it must
be assessed whether and to what extent individual systems can be adapted if required. The
adaptability of an artifact, of a hardware or software system, depends on whether it is designed
to address a set of very specific requirements only, i.e., how specialized it is and what is the
range of its possible uses. For instance, application systems that address specific requirements
can, under certain circumstances, cover a considerable range of uses, for example if they have
powerful abstractions that support convenient and secure adaptations to changed requirements.
Furthermore, if the common features of several software systems are bundled in a jointly usable
artifact (which thus represents an abstraction from these systems), adaptability is promoted
when a modification of these shareable artifacts allows to address the change in requirements.
Finally, the adaptability of systems can also be considered with regard to the respective provider.
This concerns questions about the ability and willingness to make adjustments if necessary, as
well as the associated costs.

Guideline 9: Integrity – The benefit of an IT infrastructure depends largely on the integrity
of the data it manages and the operations offered. Put simply, integrity is a measure of how
much users can rely on the answers of the systems involved. On the one hand, this affects
their consistency. For example, two simultaneous questions about a customer’s address should
not lead to different answers. The integration of the application systems is an indicator of
consistency. Low integration goes hand in hand with redundancy, which in turn jeopardizes
consistency. It also depends on the extent to which the software systems involved correctly
meet the respective requirements.

Guideline 10: Investment protection – The financial aspects associated with the creation or
acquisition and implementation of software systems can be considerable. That is why pro-
tecting the investments made in terms of profitability is an important factor. In addition to
the already considered adaptability of systems, the planned useful lifetime, the reputation
and future prospects of the respective provider or, in the case of open software systems, the
developers community, and the application of standards must be considered. The protection
of investments in software systems that are maintained in-house depends on the availability of
suitably qualified employees.

Guideline 11: Tight vs. loose coupling – To promote reuse and adaptability, the design principle
of loose coupling is often recommended. Two systems are loosely coupled when they commu-
nicate via an interface that is relatively generic. An interface that only requires strings as input
and also delivers the result as a string is less specific than an interface that requires objects of a
class that has been specified for a certain context of use, e.g., a class such as “invoice”. Loose

74

IT Modeling Language (ITML): A DSML for Supporting IT Management

coupling is therefore aimed at reducing the dependency between system parts. In this way, it
should be easier to adapt the infrastructure by replacing individual components, compared to
the case of tight coupling. On closer inspection, however, the recommendation to strive for
loose coupling as a matter of principle turns out to be problematic. Loose coupling represents
a threat to the efficiency and integrity of the software systems involved: Internal data must be
transformed into the semantically “flattened” data of the interfaces and transformed back into
internal data structures at the recipient, which is associated with effort and risk. At the same
time, tight coupling does not pose a problem for the adaptability of an infrastructure, if the
interface used for this has a high degree of invariance. In addition, tight coupling of several
software systems to one system component can promote the adaptability of an infrastructure,
if future changes are limited to these system components, i.e., the coupled software systems
can abstract from such changes. This applies, for example, to the interfaces through which
software systems access storage media or peripheral devices. If the technical access changes,
the necessary adjustments are limited to the affected parts of the operating system. In general,
the following rules should be observed: An artifact A1 should not come, if possible, from
another artifact, that is less invariant than A1 over time. If this rule can be met, i.e., if there is
reliable knowledge on both artifacts with regard to their changes, then tight coupling is, all
other things being equal, a good option. Otherwise, a loose coupling is more likely. The appro-
priate degree of coupling must be checked on a case-by-case basis and should be documented,
e.g., in architectural patterns.

Guideline 12: Scalability – If the load that an IT infrastructure has to cope with changes over
time, the capacity (computing power, storage volume, number of computer workstations,
bandwidth) must be adapted. The lower the effort involved, the better the scalability of the IT
infrastructure. In order to support the scalability, the applications whose capacity requirements
can be expected to change significantly over time must first be identified. The adjustment of
the capacity should be possible on a stepwise basis, inline with the changing requirements; and
should be monotonous, i.e., have no impact on the existing installations. However, adjustments
that require the installation of additional hardware cannot be varied as desired. It may therefore
be advisable to use external providers of platforms or software services that enable parts of the
IT infrastructure to be encapsulated in the cloud.

Guideline 13: Evolutionary development – In many companies, an IT infrastructure has de-
veloped over time that suffers from considerable weaknesses. These include insufficient
integration and adaptability, unsatisfactory functionality and cumbersome user interfaces.
Against this background, the question emerges what options IT management has for such a
situation. On the one hand, selective improvements are conceivable. They can be achieved by
replacing individual legacy systems or by adding components that allow to hide the existing
heterogeneity. The introduction of middleware systems or data warehouse systems fall into
this category. Finally, a radical step is also conceivable, aiming at redesigning the entire IT

75

4 Language Design: Concrete Syntax and ITML Diagram Types

infrastructure. Even if the last option is most suitable to significantly improve the performance
of an IT infrastructure, it is associated with considerable risks. A planned evolutionary de-
velopment of the IT infrastructure offers the opportunity to improve the IT infrastructure
in a targeted manner and to keep the risks within limits. In addition to a long-term vision,
development stages must be modeled, each of which builds on one another, in order to protect
the investments and further development of the IT infrastructure.

76

IT Modeling Language (ITML): A DSML for Supporting IT Management

5 Conclusions

In this report, we present the ITML, a Domain-Specific Language for the modeling of IT
infrastructures. The specification of the ITML reflects the professional language used for (the
description and analysis of) IT infrastructures, such as various types of hardware, software, or
networking infrastructure. To illustrate the use of the ITML, we present selected core diagram
types. We also discuss typical IT infrastructure analysis scenarios, in terms of dedicated IT
infrastructure scenarios, like the availability or performance of given IT infrastructure elements,
and scenarios that cut across different perspectives on the enterprise action system, like IT-
business alignment in terms of how the IT infrastructure supports business processes. In
addition, from these scenarios we derive requirements that inform the specification of the
ITML.

The presented ITML has been implemented with the meta modeling software environment
ADOxx (Fill and Karagiannis 2013) as part of MEMO4ADO1 (Bock and Frank 2016). However,
due to the lack of support for intrinsic features and language level types in the ADOxx meta
meta model (Fill and Karagiannis 2013)2, in order to implement the ITML in ADOxx a redesign
of the ITML meta model has been required, so that the desired domain aspects could all be
modeled at exactly the same abstraction level, cf. (Bock and Frank 2016). Those modifications
encompass, similarly to those already reported while implementing other MEMO languages,
cf. (Bock and Frank 2016), among others the following aspects: (1) Omitting several concepts,
e.g., those describing advanced domain details of interest only to a narrow group of domain
stakeholders, e.g., middleware repository, (2) Simplifying concepts, e.g., subsuming some
concerns in one central concept to foster accessibility and ease of use (e.g., aspects related
to service contracts), (3) Modifying attributes to reduce complexity or to allow for holding
references to elements modeled in other diagrams (attributes of type ‘Interref’) (e.g., when
accounting for organizational assignment), (4) Adjusting abstraction levels in case of intrinsic
attributes (or relations) or dropping them, in case it was not possible (e.g., buildIn association
between a Case and a HardwarePlatform). Please note that dropping intrinsic elements by
default would not be desirable, as in the ITML various important domain aspects are captured
at that level. Finally, to foster reuse, in addition to the main diagram types mentioned in

1The modeling tool can be downloaded from http://www.omilab.org/memo4ado
2The ADOxx meta meta model includes concepts to define meta classes, attributes, and relationships at level M2,

which can be instantiated at type level M1 in the ADOxx Modeling Toolkit (Fill and Karagiannis 2013, pp. 67).
Yet, it does not support instantiating and managing instance populations at level M0 that would represent
instantiations of model elements from the level M1.

77

http://www.omilab.org/memo4ado

5 Conclusions

Chapter 4, additional diagram types have been defined, e.g., (1) ITML Languages Diagram,
which allows to model different languages (and their characteristics). The defined concepts are
referenced within the IT Infrastructure Diagram type; (2) ITML File Exchange Format Diagram,
which allows to model different types of file exchange that specify the format of the files being
exchanged, which may be then referenced from the level of the main diagram; or (3) ITML
Library Diagram allows to define libraries used, which again are referenced from the main
diagram.

As illustrated in this research report and in the proof-of-concept implementation as part of
MEMO4ADO, we can use the created ITML models to conduct additional analyses compared
to the original ITML. However, while designing a new DSML for modeling IT Infrastructure,
we have faced modeling challenges and limitations, partly imposed by conventional meta
modeling language architecture, we have been following, cf. (Frank 2014a; Kaczmarek-Heß
and Kinderen 2017). Especially the following aspects we do not find satisfactorily addressed in
the current version of the ITML.

Type or Instance: In the IT domain, differentiation between types and instances is not trivial,
and it remains often unclear whether a real-world entity should be represented as a modeling
concept (i.e., a type) or as its application (i.e., an instance of a modeling concept). Indeed,
cf. also (Kaczmarek and Kinderen 2016; Kaczmarek-Heß and Kinderen 2017), it is not clear
whether a software artifact like “Windows Operating System” should be treated as a type or as
an instance. Similarly, it is unclear if a particular version of “Windows Operating System” is a
type or an instance, or even a specific exemplar with the assigned license number installed on
some piece of hardware. As in the MML language architecture there is no ‘perfect’ solution to
the above mentioned challenge, therefore, in the proposed conceptualization we have decided
to restrict the meta types to a few rather generic ones, which are necessary from the perspective
of the goal pursued.

A fixed number of classification levels: IT artifacts exist in a remarkable variety of types, each
of them possessing a variety of type-specific attributes and further hierarchies. In order to
avoid conceptual redundancy, we are interested in making this hierarchy part of a language
specification. Thus, we model, e.g., a Server and specialize it in, e.g., WebServer. However, by
deciding to represent the refinement relations between software artifacts as specializations, we
are dealing with a so called level mismatch problem (Atkinson and Kühne 2008), as various
domain levels/hierarchy levels are mapped onto exactly the same model level. While it is
certainly technically possible to overload the (M2) level, by relying on specialization, this
constitutes a workaround. Such workarounds are necessary since the ITML, being based on
the traditional two-level paradigm natively does not offer constructs to mirror the hierarchies
that naturally exist in the IT infrastructure domain.

78

IT Modeling Language (ITML): A DSML for Supporting IT Management

Contingent Classification: As we aim at accounting for a variety of IT artifacts belonging to the
enterprise IT landscape, a classification of different generic concepts like software, platform
or hardware devices turned out to be necessary. However, all of those can be categorized in
contingent ways, e.g., with regard to their primary purpose, architecture, visibility to a user.
From a perspective of conventional modeling, as already mentioned, such differentiation can
be modeled either by using relevant meta types, using generalization/specialization, using an
enumeration attribute of the generic meta type, or as a role. Taking into account the pursued
goals as well as, among others, considering avoiding conceptual redundancy, none of those
options are fully satisfactory, cf. also (Kaczmarek-Heß and Kinderen 2017).

Problems with incorporating relevant information: As we use the specialization relation to model
the variety of IT artifacts (cf. the software hierarchy), moving along it we are able to extend the
definition of specialized meta types. However, we face problems when trying to incorporate
relevant information, in particular when trying to assign values to attributes of meta types.
This is because in conventional meta modeling meta types cannot have a state.

No associations between objects on different levels: Within conventional meta modeling the only
relation allowed between different levels is the instantiation relation (Atkinson and Kühne
2008), and objects assigned to different classification levels cannot be jointly represented
within one body of model. As a result, we cannot link a concept defined as part of language
specification with a concept being part of language application. This leads often to redundancy
in corresponding models, as the information not stated in the language specification needs to
be added during the use of the language.

Summarizing, we see that the identified requirements for IT infrastructure modeling languages
cannot be satisfactorily addressed with a conventional language architecture. A satisfactory
solution is understood as a solution that would promote model integrity, would avoid con-
ceptual redundancy, and allow to express all relevant knowledge at the relevant classification
level. We argue that this is due to limitations imposed by (a) mainstream object-oriented pro-
gramming languages used to implement the corresponding modeling tools, and (b) relying on
the traditional two-level conceptual modeling, for details see (Kaczmarek-Heß and Kinderen
2017).

Therefore, it seems reasonable to undertake an attempt to apply an alternative language
architecture and use a multi-level modeling language like, e.g., Flexible Meta Modeling and
Execution Language (FMMLx) (Frank 2014a). The term multi-level modeling (MLM) covers
any modeling approach that aims to provide systematic support for representing multiple
classification levels within a single body of model content (Atkinson and Kühne 2001). Multi-
level modeling has been steadily increasing in importance, and works exist focusing on how,
when, and why to use multi-level modeling. For instance, while (Lara, Guerra, and Cuadrado
2014) argue that, for different use cases, application of MLM may lead to a more ‘accurate’

79

5 Conclusions

and ‘simpler’ representation of a domain than conventional approaches, and thus, reduce
so-called accidental complexity (Atkinson and Kühne 2008), Kinderen and Kaczmarek-Heß
(2021) point to MLM having an ability to naturally mirror domain hierarchies, and, e.g., Frank
(2014a, p. 335) argues that multi-level modeling fosters users’ empowerment by providing
them with concepts they are familiar with.

Indeed, MLM approaches come with a promise that, by allowing to use multiple classification
levels as well as relaxing the type/instance dichotomy, a closer correspondence of modeling
language concepts to concepts of natural language may be reached. As indicated in our
previous work, cf. (Frank 2016) and (Kaczmarek-Heß and Kinderen 2017), especially FMMLx,
among others, offering a common representation of model and code, seems to be suited to
account for the specifics of modeling IT infrastructures. Therefore, our future research will
focus on a multi-level reconstruction of all MEMO modeling languages, including the ITML.

80

IT Modeling Language (ITML): A DSML for Supporting IT Management

A Concrete Syntax – Concepts

Table A.1: ITML Concrete Syntax – Concepts
Concept Symbol Concept Symbol
Case

Rack Rack mounted

Mobile case:
Laptop

Mobile case:
Tablet

Stationary Case:
Tower

Stationary Case:
Mini

Stationary Case:
Workstation

Stationary Case:
All in One

Platform

Specific Platform Virtual Specific Platform

Mini Specific Platform
Virtual Mini Specific Plat-
form

Hardware Platform Virtual Platform

Location

Hardware Device and Supporting Artefacts

Router External storage

Scanner Printer

Software and Supporting Artefacts

Software
Lifecyle:
early stage

Lifecyle:
medium stage

Lifecyle:
retirement

Software:
mission critical

Software:
custom made

Software:
low performance

Software:
medium performance

Software:
high performance

Software:
low scalability

Continued on next page

81

A Concrete Syntax – Concepts

Table A.1 – Continued from previous page

Concept Symbol Concept Symbol
Software:
medium scalability

Software:
high scalability

Software:
source code available

Software:
source code not available

Operating System Operating System Kernel

Operating System: em-
bedded

Operating System: real
time

Operating System: mul-
tiuser

Application System

File System Virtual Machine

Component Container Orchestrator

Container Container Group

Container Engine Web client

Middleware
Workflow Management
System

Workflow Schema Data Center

Persistency Framework
Database Management
System

Firewall Personal Firewall

Network Firewall Server

Database management
server

File server

Web server Application server

Application Software
Application Software:
Data Analysis

Application Software:
Email

Application Software:
Enterprise Software

Application Software:
Office

Application Software:
Tools

Application Software:
Web browser

Application Software:
Runs in cloud

Continued on next page

82

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table A.1 – Continued from previous page

Concept Symbol Concept Symbol
Application Software:
Low user satisfaction

Application Software:
Medium user satisfaction

Application Software:
High user satisfaction

Data input

Inductive reasoner Distributed Ledger

Data warehouse IT Management Tool

Database Meta Repository

OLAP Database Database schema

Extraction process
Extraction process: auto-
mated

Extraction process:
executed, time span

Data structure

File Container Image File

Executable File Image File

Image File:
compressed

Archive File

File Structure File Exchange Format

Library Vendor

Agreement User Agreement

Use Agreement License

Prop License FOSS License

Middleware Interface
Repository

API

Network

Network LAN

Continued on next page

83

A Concrete Syntax – Concepts

Table A.1 – Continued from previous page

Concept Symbol Concept Symbol

WLAN WAN

Service

Service Web Service

Service:
External Customer

Service:
Internal Customer

Service:
External

Service: Runs in cloud

Service:
Supporting

Service Contract

Service level

Language

Language Specific language

Model

Conceptual model Data model

Object model Process model

Topic

Data Topic Function Topic

Event Topic

IT Architecture

Cluster Platform Cluster

Persistency Cluster Software Cluster

Peripherals Cluster Service Cluster

IS Architecture Scalability: low

Scalability: medium Scalability: high

Expected changeability:
low

Expected changeability:
medium

Expected changeability:
high

Internal coupling: low

Continued on next page

84

IT Modeling Language (ITML): A DSML for Supporting IT Management

Table A.1 – Continued from previous page

Concept Symbol Concept Symbol
Internal coupling:
medium

Internal coupling: high

85

Bibliography

Bibliography

Atkinson, Colin and Thomas Kühne (2001). “The Essence of Multilevel Metamodeling”. In:
Proceedings of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools. London, UK, UK: Springer-Verlag, pp. 19–33. ISBN: 3-540-
42667-1.

Atkinson, Colin and Thomas Kühne (2008). “Reducing accidental complexity in domain
models”. In: SoSyM 7.3, pp. 345–359. ISSN: 1619-1374. DOI: 10.1007/s10270-007-
0061-0. URL: http://dx.doi.org/10.1007/s10270-007-0061-0.

Barber, David (2012). Bayesian reasoning and machine learning. Cambridge University Press.

Bengtsson, PerOlof et al. (2004). “Architecture-level Modifiability Analysis (ALMA)”. In: J. Syst.
Softw. 69.1-2, pp. 129–147. ISSN: 0164-1212. DOI: 10.1016/S0164-1212(03)00080-3.
URL: http://dx.doi.org/10.1016/S0164-1212(03)00080-3.

Bock, Alexander (2015). “Beyond Narrow Decision Models: Toward Integrative Models of
Organizational Decision Processes”. In: Proceedings of the 17th IEEE Conference on Business
Informatics (CBI 2015). IEEE Computer Society, pp. 181–190. DOI: doi:10.1109/CBI.
2015.34. URL: http://ieeexplore.ieee.org/document/7264731.

Bock, Alexander and Ulrich Frank (2016). “Multi-perspective Enterprise Modeling—
Conceptual Foundation and Implementation with ADOxx”. In: Domain-Specific Con-
ceptual Modeling: Concepts, Methods and Tools. Ed. by Dimitris Karagiannis, C. Heinrich
Mayr, and John Mylopoulos. Cham: Springer International Publishing, pp. 241–267.
ISBN: 978-3-319-39417-6. DOI: 10.1007/978- 3- 319- 39417- 6_11. URL: http:
//dx.doi.org/10.1007/978-3-319-39417-6_11.

Bock, Alexander, Monika Kaczmarek, et al. (2014). “A Comparative Analysis of Selected
Enterprise Modelling Approaches”. In: Proc. of PoEM 2014. Ed. by Ulrich Frank and et al.
Vol. 197. LNBIP. Berlin: Springer, pp. 148–163. URL: http://dx.doi.org/10.1007/
978-3-662-45501-2_11.

Bucher, Tobias et al. (2006). “Analysis and Application Scenarios of Enterprise Architecture: An
Exploratory Study”. In: 2006 10th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW’06), pp. 28–28. DOI: 10.1109/EDOCW.2006.22.

86

https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1016/S0164-1212(03)00080-3
http://dx.doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/doi:10.1109/CBI.2015.34
https://doi.org/doi:10.1109/CBI.2015.34
http://ieeexplore.ieee.org/document/7264731
https://doi.org/10.1007/978-3-319-39417-6_11
http://dx.doi.org/10.1007/978-3-319-39417-6_11
http://dx.doi.org/10.1007/978-3-319-39417-6_11
http://dx.doi.org/10.1007/978-3-662-45501-2_11
http://dx.doi.org/10.1007/978-3-662-45501-2_11
https://doi.org/10.1109/EDOCW.2006.22

IT Modeling Language (ITML): A DSML for Supporting IT Management

Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong (2020). Mathematics for Machine
Learning. The Cambridge University Press.

Duncan, Nancy Bogucki (1995). “Capturing Flexibility of Information Technology Infrastruc-
ture: A Study of Resource Characteristics and Their Measure”. In: Journal of Manage-
ment Information Systems 12.2, pp. 37–57. DOI: 10.1080/07421222.1995.11518080.
eprint: https://doi.org/10.1080/07421222.1995.11518080. URL: https:
//doi.org/10.1080/07421222.1995.11518080.

Ernst, Dominik, David Bermbach, and Stefan Tai (2016). “Understanding the Container Ecosys-
tem: A Taxonomy of Building Blocks for Container Lifecycle and Cluster Management”. In:
Proceedings of the 2nd International Workshop on Container Technologies and Container Clouds
(WoC 2016). IEEE.

Feiler, Peter H, David P Gluch, and John J Hudak (2006). The architecture analysis & design
language (AADL): An introduction. Tech. rep. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

Feltus, Christophe, Michael Petit, and Eric Dubois (2009). “Strengthening Employee’s Respon-
sibility to Enhance Governance of IT: COBIT RACI Chart Case Study”. In: New York, NY,
USA: Association for Computing Machinery, pp. 23–32. ISBN: 9781605587875.

Fill, Hans-Georg and Dimitris Karagiannis (2013). “On the Conceptualisation of Modelling
Methods Using the ADOxx Meta Modelling Platform”. In: EMISA 8.1, pp. 4–25.

Frank, Ulrich (2010). Outline of a Method for Designing Domain-Specific Modelling Languages. ICB
Research Report 42. Essen: University of Duisburg-Essen.

Frank, Ulrich (2011). The MEMO Meta modeling Language (MML) and Language Architecture. 2nd
Edition. ICB-Research Report 43. Essen: University of Duisburg-Essen.

Frank, Ulrich (2013). “Domain-Specific Modeling Languages: Requirements Analysis and
Design Guidelines”. In: Domain Engineering. Ed. by Iris Reinhartz-Berger et al. Berlin:
Springer, pp. 133–157.

Frank, Ulrich (2014a). “Multilevel Modeling”. In: Business and Information Systems Engineering
6.6, pp. 319–337. ISSN: 1867-0202. DOI: 10.1007/s12599-014-0350-4. URL: http:
//dx.doi.org/10.1007/s12599-014-0350-4.

Frank, Ulrich (2014b). “Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges”. In: SoSyM 13.3, pp. 941–962.

87

https://doi.org/10.1080/07421222.1995.11518080
https://doi.org/10.1080/07421222.1995.11518080
https://doi.org/10.1080/07421222.1995.11518080
https://doi.org/10.1080/07421222.1995.11518080
https://doi.org/10.1007/s12599-014-0350-4
http://dx.doi.org/10.1007/s12599-014-0350-4
http://dx.doi.org/10.1007/s12599-014-0350-4

Bibliography

Frank, Ulrich (2016). “Designing Models and Systems to Support IT Management: A Case for
Multilevel Modeling”. In: MULTI@MoDELS. Ed. by Colin Atkinson, Georg Grossmann,
and Tony Clark. ceur-ws.org, pp. 3–24.

Frank, Ulrich et al. (2009). “ITML: A Domain-Specific Modeling Language for Supporting
Business Driven IT Management”. In: In Proc. of the 9th OOPSLA workshop on domain-specific
modeling (DSM, 2009.

Goldstein, Anat and Ulrich Frank (2016). “Components of a multi-perspective modeling
method for designing and managing IT security systems”. In: ISeB 14.1, pp. 101–140. ISSN:
1617-9854. DOI: 10.1007/s10257-015-0276-5. URL: http://dx.doi.org/10.
1007/s10257-015-0276-5.

Hanschke, Inge (2010). Strategic IT Management. A Toolkit for Enterprise Architecture Management.
Berlin: Springer. ISBN: 3-540-29169-5.

Heise, David (2013). Unternehmensmodell-basiertes IT-Kostenmanagement als Bestandteil eines
integrativen IT-Controllings. Berlin: Logos.

ISO (2011). Systems and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality models. Geneva: ISO.

Johansson, Erik and Pontus Johnson (2005). “Assessment of enterprise information security –
an architecture theory diagram definition”. In: Proc. of Conference on Systems Engineering
Research, pp. 136–146.

Kaczmarek, Monika and Sybren de Kinderen (2016). “A Conceptualization of IT Platform for
the Needs of Enterprise IT Landscape Modeling”. In: 18th IEEE Conference on Business
Informatics, CBI 2016, 29th August - 1st September 2016, Paris, France, Volume 1 - Conference
Papers. Ed. by Elena Kornyshova et al. IEEE, pp. 74–83. DOI: 10.1109/CBI.2016.17.
URL: https://doi.org/10.1109/CBI.2016.17.

Kaczmarek-Heß, Monika and Sybren de Kinderen (2017). “A Multilevel Model of IT Platforms
for the Needs of Enterprise IT Landscape Analyses”. In: Bus. Inf. Syst. Eng. 59.5, pp. 315–329.
DOI: 10.1007/s12599-017-0482-4. URL: https://doi.org/10.1007/s12599-
017-0482-4.

Kattenstroth, Heiko, Ulrich Frank, and David Heise (2013). “Towards a Modelling Method
in Support of Evaluating Information Systems Integration”. In: Enterprise Modelling and
Information Systems Architectures (EMISA 2013). Ed. by Reinhard Jung and Manfred Reichert.
Bonn: Gesellschaft für Informatik e.V., pp. 85–99.

88

https://doi.org/10.1007/s10257-015-0276-5
http://dx.doi.org/10.1007/s10257-015-0276-5
http://dx.doi.org/10.1007/s10257-015-0276-5
https://doi.org/10.1109/CBI.2016.17
https://doi.org/10.1109/CBI.2016.17
https://doi.org/10.1007/s12599-017-0482-4
https://doi.org/10.1007/s12599-017-0482-4
https://doi.org/10.1007/s12599-017-0482-4

IT Modeling Language (ITML): A DSML for Supporting IT Management

Kinderen, Sybren de and Monika Kaczmarek-Heß (2018). “Enterprise Modeling in Support of
SOA Migration Analysis”. In: EMISA 13.1, pp. 1–36.

Kinderen, Sybren de and Monika Kaczmarek-Heß (2021). “Making a Case for Multi-level Ref-
erence Modeling - A Comparison of Conventional and Multi-level Language Architectures
for Reference Modeling Challenges”. In: Wirtschaftsinformatik 2021 Proceedings. aisnet.

Laan, Sjaak (2017). IT Infrastructure Architecture – Infrastructure Building Blocks and Concepts.
Lulu Press Inc.

Lankhorst, Marc (2013). Enterprise Architecture at Work: Modelling, Communication and Analysis.
3rd ed. The Enterprise Engineering Series. Heidelberg: Springer.

Lara, Juan De, Esther Guerra, and Jesús Sánchez Cuadrado (2014). “When and How to Use
Multilevel Modelling”. In: ACM Trans. Softw. Eng. Methodol. 24.2, 12:1–12:46. ISSN: 1049-
331X. DOI: 10.1145/2685615. URL: http://doi.acm.org/10.1145/2685615.

Luftman, Jerry and C. Bullen (2004). Managing the Information Technology Resource: Leadership in
the Information Age. Pearson Education. ISBN: 9780130351265.

Luftman, Jerry, Hossein S Zadeh, et al. (2012). “Key Information Technology and Management
Issues 2011-2012: An International Study”. In: Journal of Information Technology 27.3, pp. 198–
212. DOI: 10.1057/jit.2012.14.

Mangiapane, Markus and Roman P. Buechler (2015). Modernes IT-Management. Springer. ISBN:
ISBN 9783658034924.

Moody, Daniel L. (2009). “The Physics of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering”. In: IEEE Trans. Software Eng. 35.6, pp. 756–779.

Newman, Sam (2015). Building microservices: designing fine-grained systems. O’Reilly Media, Inc.

Niemann, Klaus D. (2005). Von der Unternehmensarchitektur zur IT-Governance: Bausteine für ein
wirksames IT-Management. Wiesbaden: Vieweg+Teubner Verlag.

Nyrhinen, Mari (2006). IT infrastructure: structure, properties and processes. Working Papers.
Helsinki School of Economics.

Overbeek, Sietse, Ulrich Frank, and Christian Köhling (2015). “A language for multi-perspective
goal modelling: Challenges, requirements and solutions”. In: CSI 38, pp. 1–16. DOI: 10.
1016/j.csi.2014.08.001.

Papazoglou, Mike P and Willem-Jan Van Den Heuvel (2007). “Service oriented architectures:
approaches, technologies and research issues”. In: The VLDB journal 16.3, pp. 389–415.

89

https://doi.org/10.1145/2685615
http://doi.acm.org/10.1145/2685615
https://doi.org/10.1057/jit.2012.14
https://doi.org/10.1016/j.csi.2014.08.001
https://doi.org/10.1016/j.csi.2014.08.001

Bibliography

Parviainen, Paivi et al. (2017). “Tackling the digitalization challenge: How to benefit from digi-
talization in practice”. In: International Journal of Information Systems and Project Management
5, pp. 63–77. DOI: 10.12821/ijispm050104.

Scheer, August-Wilhelm (2001). ARIS – Modellierungsmethoden, Metamodelle, Anwendungen.
4th ed. Heidelberg: Springer. ISBN: 3-540-41601-3.

Sultan, Sari, Imtiaz Ahmad, and Tassos Dimitriou (2019). “Container Security: Issues, Chal-
lenges, and the Road Ahead”. In: IEEE Access 7, pp. 52976–52996. DOI: 10.1109/ACCESS.
2019.2911732.

Syed, Madiha H. and Eduardo B. Fernandez (2018). “A Reference Architecture for the Container
Ecosystem”. In: Proceedings of the 13th International Conference on Availability, Reliability and
Security. ARES 2018. Hamburg, Germany: Association for Computing Machinery. ISBN:
9781450364485. DOI: 10.1145/3230833.3232854. URL: https://doi.org/10.
1145/3230833.3232854.

Tanenbaum, Andrew S. (2006). Structured Computer Organization. 5th. USA: Prentice Hall PTR.

Tanenbaum, Andrew S. and Herbert Bos (2014). Modern Operating Systems. 4th ed. Boston, MA:
Pearson. ISBN: 978-0-13-359162-0.

The Open Group (2012). ArchiMate 2.0 specification: Open Group Standard. Zaltbommel: Van
Haren. ISBN: 978-90-8753-692-3.

90

https://doi.org/10.12821/ijispm050104
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1145/3230833.3232854
https://doi.org/10.1145/3230833.3232854
https://doi.org/10.1145/3230833.3232854

Previously Published ICB Research Reports

2021

No 71 (October 2021)

Schauer, Carola; Schwarz, Tobias: “Wie sollte man Studieninteressierte über Wirtschaftsin-
formatik informieren?: Ergebnisse einer Befragung von Oberstufenschülerinnen und
-schülern in NRW zu präferierten Informationswegen und Vorstellungen über das Studi-
enfach.”

No 70 (December 2021)

Frank, Ulrich; Maier, Pierre; Bock, Alexander: “Low Code Platforms: Promises, Concepts
and Prospects – A Comparative Study of Ten Systems.”

No 69 (June 2021)

Schauer, Carola: “WirtschaftsinformatikStudiengänge an Universitäten in Deutschland –
Analyse der Studienanfängerzahlen und Frauenanteile im Vergleich zur Informatik und
zu Fachhochschulen.”

2020

No 68 (December 2020)

Schauer, Carola: “Warum entscheiden sich Studienanfänger für Wirtschaftsinfor-
matik? – Ergebnisse einer Umfrage unter Bachelorstudierenden im ersten Fachsemester
Wirtschaftsinformatik an der UDE (Nov. 2018 und Nov. 2019).”

No 67 (November 2020)

Frank, Ulrich; Bock, Alexander: “Organisationsforschung und Wirtschaftsinformatik:
Zeit für eine An nḧerung?”

2018

No 66 (December 2019)

Frank, Ulrich: “The Flexible Multi-Level Modelling and Execution Language (FMMLx.
Version 2.0: Analysis of Requirements and Technical Terminology.”

2015

No 65 (August 2015)

Schauer, Carola; Schauer, Hanno: “IT- und Medienbildung an Schulen. Ergebnisse einer
empirischen Studie an einem rheinland-pflzischen Gymnasium.”

No 64 (January 2015)

Föcker, Felix; Houdek, Frank; Daun, Marian; Weyer, Thorsten: “Model-Based Engineering
of an Automotive Adaptive Exterior Lighting System – Realistic Example Specifications of
Behavioral Requirements and Functional Design.”

No 63 (January 2015)

Schauer, Carola; Schauer, Hanno: “IT an allgemeinbildenden Schulen: Bildungsgegenstand
und -infrastruktur – Auswertung internationaler empirischer Studien und Literaturanal-
yse.”

2014

No 62 (October 2014)

Köninger, Stephan; Heß, Michael: “Ein Software-Werkzeug zur multiperspektivischen
Bewertung innovativer Produkte, Projekte und Dienstleistungen: Realisierung im Projekt
Hospital Engineering.”

No 61 (August 2014)

Schauer, Carola; Frank, Ulrich: “Wirtschaftsinformatik an Schulen – Status und Desider-
ata mit Fokus auf Nordrhein-Westfalen.”

No 60 (May 2014)

Heß, Michael: “Multiperspektivische Dokumentation und Informationsbedarfsanalyse
kardiologischer Prozesse sowie Konzeptualisierung ausgewählter medizinischer Ressour-
centypen im Projekt Hospital Engineering”

No 59 (May 2014)

Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Schypula, Melanie; Striewe,
Michael: “Zweiter Jahresbericht zum Projekt ‘Bildungsgerechtigkeit im Fokus’ (Teilprojekt
1.2 – ‘Blended Learning’) an der Fakultät für Wirtschaftswissenschaften”

No 58 (March 2014)

Breitschwerdt, Rüdiger; Heß, Michael: “Konzeption eines Bezugsrahmens zur Analyse und
Entwicklung von Geschäftsmodellen mobiler Gesundheitsdienstleistungen – Langfassung”

No 57 (March 2014)

Heß, Michael; Schlieter, Hannes (Hrsg.): “Modellierung im Gesundheitswesen – Tagungs-
band des Workshops im Rahmen der ”Modellierung 2014””

2013

No 56 (July 2013)

Svensson, Richard Berntsson; Berry,Daniel M.; Daneva, Maya; Doerr, Joerg; Espana,
Sergio; Herrmann, Andrea; Herzwurm, Georg; Hoffmann, Anne; Pena, Raul Mazo;
Opdahl, Andreas L.; Pastor, Oscar; Pietsch,Wolfram; Salinesi, Camille; Schneider, Kurt;
Seyff, Norbert; van de Weerd, Inge; Wieringa, Roel; Wnuk, Krzysztof (Eds.): “19th
International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2013). Proceedings of the REFSQ 2013 Workshops CreaRE, IWSPM,
and RePriCo, the REFSQ 2013 Empirical Track (Empirical Live Experiment and Empirical
Research Fair), the REFSQ 2013 Doctoral Symposium, and the REFSQ 2013 Poster
Session””

No 55 (May 2013)

Daun, Marian; Focke, Markus; Holtmann, Jörg; Tenbergen, Bastian “Goal-Scenario-
Oriented Requirements Engineering for Functional Decomposition with Bidirectional
Transformation to Controlled Natural Language. Case Study “Body Control Module””

No 54 (March 2013)

Fischotter, Melanie; Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Striewe,
Michael “Erster Jahresbericht zum Projekt “Bildungsgerechtigkeit im Fokus” (Teilprojekt
1.2 – “Blended Learning”) an der Fakultät für Wirtschaftswissenschaften”

2012

No 53 (December 2012)

Frank, Ulrich: “Thoughts on Classification / Instantiation and Generalisation / Specialisa-
tion”

No 52 (July 2012)

Berntsson-Svensson, Richard; Berry, Daniel; Daneva, Maya; Dörr, Jörg; Fricker, Samuel
A; Herrmann, Andrea; Herzwurm, Georg; Kauppinen, Marjo; Madhavji, Nazim H;
Mahaux, Martin; Paech, Barbara; Penzenstadler, Birgit; Pietsch, Wolfram; Salinesi,
Camille; Schneider, Kurt; Seyff, Norbert; van de Weerd, Inge (Eds.): “18th International
Working Conference on Requirements Engineering – Foundation for Software Quality.
Proceedings of the Workshops RE4SuSy, REEW, CreaRE, RePriCo, IWSPM and the
Conference Related Empirical Study, Empirical Fair and Doctoral Symposium”

No 51 (May 2012)

Frank, Ulrich: “Specialisation in Business Process Modelling – Motivation, Approaches
and Limitations”

No 50 (March 2012)

Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz,
Philipp ; Schütz, Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-
Studien – Eine Metastudie zu serviceorientierten Architekturen”

2011

No 49 (December 2011)

Frank, Ulrich: “MEMO Organisation Modelling Language (2) – Focus on Business
Processes”

No 48 (December 2011)

Frank, Ulrich: “MEMO Organisation Modelling Language (1) – Focus on Organisational
Structure”

No 47 (December 2011)

Frank, Ulrich: “Multiperspective Enterprise Modelling – Requirements and Core Diagram
Typs”

No 46 (December 2011)

Frank, Ulrich: “Multiperspective Enterprise Modelling – Background and Terminological
Foundation”

No 45 (November 2011)

Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola:
“Leitfaden zur Erstellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2011)

Berenbach, Brian; Daneva, Maya; Dörr, Jörg; Fricker, Samuel; Gervasi, Vincenzo; Glinz,
Martin; Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H; Paech, Barbara;
Schockert, Sixten; Seyff, Norbert (Eds.): “17th International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ 2011) – Proceedings
of the REFSQ 2011 Workshops REEW, EPICAL and RePriCo, the REFSQ 2011 Empirical
Track (Empirical Live Experiment and Empirical Research Fair), and the REFSQ 2011
Doctoral Symposium”

No 43 (February 2011)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architec-
ture. 2nd Edition”

2010

No 42 (December 2010)

Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Lan-
guages”

No 41 (December 2010)

Adelsberger, Heimo; Drechsler, Andreas (Hrsg.): “Ausgewählte Aspekte des Cloud-
Computing aus einer IT-Management-Perspektive – Cloud Governance, Cloud Security
und Einsatz von Cloud Computing in jungen Unternehmen”

No 40 (October 2010)

Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg;
Janzen, Dirk; Merten, Thorsten; Pietschm, Wolfram; Schmid, Klaus; Schneider,Kurt;
Thurimella, Anil Kumar: “16th International Working Conference on Requirements
Engineering: Foundation for Software Quality – Proceedings of the Workshops CreaRE,
PLREQ,RePriCo and RESC”

No 39 (May 2010)

Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption
für den Studiengang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswis-
senschaften der Universität Duisburg-Essen”

No 38 (February 2010)

Schauer, Carola : “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen
von CIOs und WI-Professoren”

No 37 (January 2010)

Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop
on Variability Modelling of Software–intensive Systems”

2009

No 36 (December 2009)

Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstandnis der IT–
Governance – Anregungen zu einer kritischen Reflexion”

No 35 (August 2009)

Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.: “Considerations on Handling Link
Errors in SCTP”

No 34 (June 2009)

Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.):
“Workshop on Service Monitoring, Adaptation and Beyond”

No 33 (May 2009)

Adelsberger, Heimo; Drechsler, Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne,
Sophia; Pellinger, Jan; Rosenberger, Marcel; Trepper, Tobias: “Einsatz von Social Software
in Unternehmen - Studie über Umfang und Zweck der Nutzung”

No 32 (April 2009)

Barth, Manfred; Gadatsch, Andreas; Kutz, Martin; Ruding, Otto; Schauer, Hanno;
Strecker, Stefan: “Leitbild IT–Controller/–in . Beitrag der Fachgruppe IT–Controlling der
Gesellschaft fur Informatik e. V.”

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self–Referential
Enterprise Systems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: “Kriterien guter Wissensarbeit - Ein Vorschlag aus dem
Blickwienkel der Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International
Workshop on Variability Modelling of Software–intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: “Computer Aided Assessments and
Programming Exercises with JACK”

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Univer-
sitaten im deutschsprachigen Raum – Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Muller–Clostermann: “CapSys: A Tool for Macroscopic Capacity
Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi–Touch beim
Softwaredesign am Beispiel der CRC Card–Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architec-
ture - Revised Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing -
Outline of an Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo–Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second
International Workshop on Variability Modelling of Software–intensive Systems.”

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-
management-Kreislauf”

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software”

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the
Relevance Debate”

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik:
Schritte der Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die
Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An
Analysis of Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and
Mainframe Capacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals
- Analyse und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden
für Softwarearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext
serviceorientierter Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an
Application to Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben
des IT Managements - Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender
Lehrbücher der Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Quali-
fizierung des wissenschaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen)
Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein
Forschungspro-gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information
Systems Research”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten - Ein Diskussions-
beitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
III - Results Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
II - Results Information Systems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
I - Research Objectives and Method”

No 1 (August 2005)

Lange, Carola: “Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und
-methoden in Wirtschaftsinformatik und Information Systems”

�������������������

���
���������������������������
���������������������

Ulrich Frank

Version 2.0: Analysis of Requirements and

Technical Terminology

ICB-Research Report No. 66

December 2018

Research Group Core Research Topics

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. F. Beck
Visualization Research Group

Information visualization, software visualization, visual analy-
tics

Prof. Dr. T. Brinda
Didactics of Informatics

Competence modelling and educational standards in Infor-
matics, Students‘ conceptions in Informatics, Education in the
digital world, Vocational education in Informatics

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelli-
gence, Data Warehousing

Prof. Dr.-Ing. L. Davi
Research in Secure Software Systems

Software Security, Security of Smart Contracts, Trusted Com-
puting, Hardware-assisted Security

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. J. Marrón
Networked Embedded Systems

Sensor Networks, Adaptive Systems, System Software for em-
bedded systems, Data Management in mobile environments,
Hoarding / Caching, Ubiquitous/Pervasive Computing, Semi-
structured databases

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. Ing. E. Rathgeb
Computer Network Technology

Computer Network Technology

Prof. Dr. S. Schneegaß
Human Computer Interaction

Mobile, wearable, and ubiquitous computing systems, Implicit
Feedback, Usable Security, Smart Clothing, Interaction in
Virtual and Augmented Worlds, Ubiquitous Interaction

Prof. Dr. R. Schütte
Business Informatics and Integrated Information Systems

Enterprise Systems, IS-Architectures, Digitalization of organisa-
tions, Information modelling, Scientific theory problems of the
Business Informatics field

Prof. Dr. S. Stieglitz
Professional Communication in Electronic Media / Social
Media

Digital Enterprise / Digital Innovation, Digital Society

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

66The Flexible Multi-Level Modelling
and Execution Language (FMMLx)

Dieser Text wird via DuEPublico, dem Dokumenten- und Publikationsserver der Universität
Duisburg-Essen, zur Verfügung gestellt. Die hier veröffentlichte Version der E-Publikation
kann von einer eventuell ebenfalls veröffentlichten Verlagsversion abweichen.

DOI: 10.17185/duepublico/75252
URN: urn:nbn:de:hbz:464-20220110-111514-6

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/75252
https://nbn-resolving.org/urn:nbn:de:hbz:464-20220110-111514-6

	1 Introduction
	2 Main Analysis Scenarios
	2.1 Analysis of IT Landscape Elements
	2.1.1 Identification of Existing IT Landscape Elements
	2.1.2 Analysis of Main Characteristics of Existing IT Infrastructure Elements
	2.1.3 Analysis of Dependencies Among IT Landscape Elements

	2.2 IT-centric Analysis
	2.2.1 Security Analysis
	2.2.2 Maintainability
	2.2.3 Portability Analysis
	2.2.4 Performance Analysis
	2.2.5 Availability Analysis
	2.2.6 Analysis of Vendors and Existing Relationships

	2.3 Integration Analysis
	2.4 Integrated IT Infrastructure and Action System Analysis
	2.4.1 Analysis of IT-Business Alignment
	2.4.2 Analysis of Organizational Assignment

	3 Language Design: Abstract Syntax and Semantics
	3.1 Main IT Landscape Elements
	3.2 Selected IT-centric Analysis
	3.3 Integration: Technologies, Languages, and Conceptual Integration
	3.4 IT Architecture
	3.5 Integrated IT Infrastructure and Action System Analysis
	3.6 Auxiliary Types
	3.7 Constraints
	3.8 Requirements and Their Fulfillment

	4 Language Design: Concrete Syntax and ITML Diagram Types
	4.1 Concrete Syntax
	4.2 Selected ITML Diagram Types
	4.2.1 IT Infrastructure Diagram
	4.2.2 Topic Diagram and Corresponding Analysis
	4.2.3 Architecture Diagram

	4.3 Integration of ITML Diagram Types With Other MEMO Diagram Types
	4.4 Selected Design Principles

	5 Conclusions
	A Concrete Syntax – Concepts
	Bibliography

