
The Flexible Multi-Level Modelling and Execution Language (FMMLx)

Frank, Ulrich

In: ICB Research Reports - Forschungsberichte des ICB / 2018

This text is provided by DuEPublico, the central repository of the University Duisburg-Essen.

This version of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47506

URN: urn:nbn:de:hbz:464-20181221-103049-3

Link: https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47506

License:
Sofern nicht im Inhalt ausdrücklich anders gekennzeichnet, liegen alle Nutzungsrechte bei den Urhebern bzw.
Herausgebern. Nutzung - ausgenommen anwendbare Schrankenregelungen des Urheberrechts - nur mit deren
Genehmigung.

Source: ICB-Research Report No. 66, December 2018

https://doi.org/10.17185/duepublico/47506
http://nbn-resolving.org/urn:nbn:de:hbz:464-20181221-103049-3
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47506

�������������������

���
���������������������������
���������������������

Ulrich Frank

Version 2.0: Analysis of Requirements and

Technical Terminology

ICB-Research Report No. 66

December 2018

Research Group Core Research Topics

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. F. Beck
Visualization Research Group

Information visualization, software visualization, visual analy-
tics

Prof. Dr. T. Brinda
Didactics of Informatics

Competence modelling and educational standards in Infor-
matics, Students‘ conceptions in Informatics, Education in the
digital world, Vocational education in Informatics

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelli-
gence, Data Warehousing

Prof. Dr.-Ing. L. Davi
Research in Secure Software Systems

Software Security, Security of Smart Contracts, Trusted Com-
puting, Hardware-assisted Security

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. J. Marrón
Networked Embedded Systems

Sensor Networks, Adaptive Systems, System Software for em-
bedded systems, Data Management in mobile environments,
Hoarding / Caching, Ubiquitous/Pervasive Computing, Semi-
structured databases

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. Ing. E. Rathgeb
Computer Network Technology

Computer Network Technology

Prof. Dr. S. Schneegaß
Human Computer Interaction

Mobile, wearable, and ubiquitous computing systems, Implicit
Feedback, Usable Security, Smart Clothing, Interaction in
Virtual and Augmented Worlds, Ubiquitous Interaction

Prof. Dr. R. Schütte
Business Informatics and Integrated Information Systems

Enterprise Systems, IS-Architectures, Digitalization of organisa-
tions, Information modelling, Scientific theory problems of the
Business Informatics field

Prof. Dr. S. Stieglitz
Professional Communication in Electronic Media / Social
Media

Digital Enterprise / Digital Innovation, Digital Society

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

66The Flexible Multi-Level Modelling
and Execution Language (FMMLx)

	

Die Forschungsberichte des Instituts für Infor- The ICB Research Reports comprise preliminary
matik und Wirtschaftsinformatik stellen vorläufi- results, which will usually be revised for subse-
ge Ergebnisse dar, die i. d. R. noch für spätere Ver- quent publications. Critical comments would be
öffentlichungen überarbeitet werden. Daher sind appreciated by the authors.
die Autoren für kritische Hinweise dankbar.

Die durch das Urheberrecht begründeten Rechte, All rights reserved. No part of this report may be
insbesondere der Übersetzung, des Nachdruckes, reproduced by any means, or translated.
des Vortrags, der Vervielfältigung, der Weit-
ergabe, der Veränderung und der Entnahme
von Abbildungen und Tabellen – auch bei
auszugsweiser Verwertung – bleiben vorbehal-
ten.

Authors’ Address: ICB Research Reports
Edited by:

Ulrich Frank Prof. Dr. Frederik Ahlemann

University of Duisburg-Essen Prof. Dr. Fabian Beck

Institute for Computer Science and Business In- Prof. Dr. Torsten Brinda

formatics Prof. Dr. Peter Chamoni

Universitätsstr. 9, 45141 Essen, Germany Prof. Dr. Lucas Davi

Email: ulrich.frank@uni-due.de Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke

Prof. Dr. Volker Gruhn

Prof. Dr. Tobias Kollmann

Prof. Dr. Pedro José Marrón

Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb

Prof. Dr. Stefan Schneegaß

Prof. Dr. Reinhard Schütte

Prof. Dr. Stefan Stieglitz

Contact:

Institute for Computer Science and

Business Information Systems (ICB)

University of Duisburg-Essen

Universitätsstr. 9

45141 Essen – Germany

Tel.: +49 201-183-4041

Fax: +49 201-183-4011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

DOI 10.17185/duepublico/47506

Abstract

The Flexible Meta Modelling and Execution Language (FMMLx) is a multi-level language that
allows to create executable models. It is implemented in the integrated meta-programming
and meta-modelling environment Xmodeler. The Xmodeler is based on XCore, a recursive,
reflexive meta-model that allows the definition and implementation of classes on arbitrary
classification levels. However, XCore does not allow to assign classification levels to classes.
The FMMLx extends XCore with explicit classification levels and intrinsic features that allow
for deferred instantiation. Like XCore, the FMMLx features a common representation of models
and code. As a consequence, models can be executed without the need to transform them to
code. The use of the FMMLx during the last five years was promising, since it allows to clearly
promote reuse and flexibility of modelling languages and software systems. Nevertheless,
some of the assumptions its design was based on had to be challenged. In addition, the use
of the language was compromised by various limitations. Against this background, it was
decided to develop a substantially revised version, the FMMLx 2.0. This report presents an
analysis of requirements that form the foundation for the subsequent specification of the
new version. The report also presents a proposal for a technical terminology of multi-level
modelling.

Keywords: Multi-Level Modelling, DSML, Language Architecture, Requirements

Contents

1 Introduction 1

2 New Requirements 3
2.1 Language Core 5

2.1.1 Contingent Levels 5
2.1.2 “Classless” Classes 10
2.1.3 Distinction of Instantiation Levels within Associations 11
2.1.4 Deferred Specification of Associations 11
2.1.5 Avoiding Redundant Specification 14
2.1.6 Auxiliary (Meta-) Classes 16
2.1.7 Differentiation of Uni- and Bi-Directional Associations 17
2.1.8 Support of Delegation 17
2.1.9 Support for the Specification of Further Association Types 18
2.1.10 Multiplicities of Attributes 22
2.1.11 Deferred Instantiation of Attribute Classes 22
2.1.12 Specification of Dependencies between Model Elements 23

2.2 Analysis and Management of Models 28
2.2.1 Model Analysis 28
2.2.2 Support for Changes 30
2.2.3 Model History 32
2.2.4 Information Filtering 33
2.2.5 Compensation for Lack of Static Typing 35
2.2.6 Model Completion 35
2.2.7 User Management 37

2.3 Concrete Syntax 38

3 Terminology 40
3.1 Misleading Application of Current Terminology 40
3.2 Limitations of Current Terminology 42
3.3 Proposal for Specialized Terminology 43

4 Conclusions 47

iii

Bibliography 48

A Appendix: List of Requirements 51

iv

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

1 Introduction

Multi-level modelling is motivated by the shortcomings of traditional (modelling) language
architectures that are usually restricted to one or two classification levels, and that allow
for “shallow instantiation” only, which “is based on the premise that a class can only define
the semantics of its direct instances, and can have no effect on entities created by further
instantiation steps” (Atkinson and Kühne 2001, p. 20). In contrast to traditional language
architectures, multi-level modelling languages enable an arbitrary number of classification
levels. Also, every class is an object that may have a state and may respond to messages.
Furthermore, they allow to define properties of a class that do not apply to their direct instances,
but also to instances further down the instantiation chain. Hence, multi-level modelling enables
a higher level of abstraction, which in turn promotes reuse and adaptability. It also enables
to avoid the “accidential complexity” (Atkinson and Kühne 2008; Brooks 1995), caused by
overloading traditional models. Multi-level modelling allows for creating models that include
objects on multiple classification levels. Thus, modelers are no longer challenged by the
mandatory decision between language and model layer, since each layer (apart from M1) may
serve as both, a representation of a language or of a model. In other words, a multi-level
modelling environment empowers its users to be not just modelers, in the sense of applying a
given modelling language, but to be language engineers at the same time. Hence, a multi-level
modelling language qualifies as both, a meta-modelling language and a modelling language.

Various languages and tools have been proposed to support multi-level modelling (Atkinson
and Gerbig 2016; Atkinson, Kennel, and Goss 2011; Jeusfeld 2009; Kühne and Schreiber
2007; Lara and Guerra 2010; Volz 2011). The basic concepts they use are similar, and in part
equivalent. Differences often relate to terminology, and a few specific peculiarities. The latter
include the question how multi-level models can be mapped to implementation languages.
The Flexible Meta Modelling and Execution Language (FMMLx) is a multi-level language that
allows to create executable models (Frank 2014). Different from other multi-level modelling
languages, it features a common representation of conceptual models and code. This is
accomplished by extending XCore, the meta-model of a meta-programming and modelling
language that is supplemented with a comprehensive software development and (meta-)
modelling environment, the Xmodeler (Clark, Sammut, and Willans 2008; Clark and Willans
2012). As a consequence, the notorious sychronization problem can largely be avoided. During
the use of the FMMLx and the Xmodeler, various limitations were discovered that finally
resulted in the decision to develop a new version of the language.

1

1 Introduction

To prepare for the specification of the FMMLx 2.0, this report presents an analysis of require-
ments that go beyond the scope of the previous version. Multi-level modelling introduces
concepts that do not only challenge established principles of conceptual modelling, but also
demand for new perspectives on the modelling subject. Therefore, one can speak of a new
paradigm. A new paradigm is usually characterized by the need for a new terminology. This
is indeed the case for multi-level modelling. Since it introduces concepts that do not exist in
the traditional paradigm, existing terms are not always suited to adequately express them.
Therefore, the report also aims at clarifying the terminology in order to make descriptions of
multi-level models more comprehensive and consistent.

2

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

2 New Requirements

The current version of the FMMLx has been in use for about five years, both for teaching
purposes and within various research projects (Frank 2016; Kaczmarek-Heß 2017; Kaczmarek-
Heß and Heß 2018; Kaczmarek-Heß and Kinderen 2017). Fig. 2.1 shows the meta-model of the
current version. It extends XCore (Clark, Sammut, and Willans 2008) with additional properties
to support intrinsic features and deferred (or “deep”) instantiation. An intrinsic feature is an
attribute, an operation, or an association that is not instantiated with the instantiation of a class
on level m, but only on a predefined instantiation level n < m-1. The additional meta-attributes
isIntrinsic and instLevel allow for the specification of intrinsic features. Furthermore,
the classes MetaAdaptor and MetaClass were introduced to allow the direct creation of
classes on any classification level.

The concrete syntax serves to clearly represent the peculiarities of multi-level models (see
Fig. 2.2). The level of a class is indicated by the background colour of the area that serves the
display of the class name. The name of the (meta-) class of a class is depicted on top of the class
name. Intrinsic features are marked through the corresponding instantiation level, which is
shown in white on a black square next to the representation of the feature.

The FMMLx was implemented in the Xmodeler, which enabled its use not only as a modelling
language, but also as an implementation language, since models and code share the same
representation. The language and the development environment demonstrated clear advan-
tages over the traditional paradigm. At the same time, it became obvious that in some cases
the presuppositions made with the design of the current version were not appropriate. Fur-
thermore, the development and maintenance of larger models in the tool created the need for
more elaborate support of model analysis and management. The following requirements are
grouped into core language requirements (RC), requirements that result from the management
and analysis of models with a modelling tool (RT), and requirements related to the notation of
the language (RN). The priority of a requirement reflects the need for a corresponding feature
based on the experience made with the prior version.

The requirements are illustrated with diagrams that are depicted in the notation of the prior
version of the FMMLx . In cases, where the previous notation is not sufficient to represent the
intended concept, a preliminary notation is used. Note that classification levels are represented
in a style that is different from the one proposed with the UML. Instead of representing the
classification level with an integer in regular script, such as M2, the integer is printed in

3

2 New Requirements

doc: String

id: String

Doc

body: String

id: String

Constraint

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

0,*0,*

0,*
0,*

0,*

0,*

XCore

(simplified)

Interface Layer

Mn

1..1

name: String

End

0,1

0,1

1,1

2,2

0,*0,*

extended features

0,*

0,*

name: String

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Association

uinherits from

0,*

0,*

3

isIntrinsic: Boolean

instLevel: Integer

 isIntrinsic: Boolean

 instLevel: Integer

MetaClass

allInstances: Set

allAssociations: Set

createAssociation(...): Association

level = n

level: Integer

MetaAdaptor

new(): Object

newAtLevel(l: Integer): Object

FMML
x

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

new() : Object

name: String

isAbstract: Boolean

Class

Object

get(name: String): Object

set(name: String, value: Object): Object

copy(): Object

save(fileName: String): Object

context End

@Constraint MultiplicitiesForIntrinsicAssocs

not self.association.isIntrinsic or

self.association.instLevel =

self.MetaClass.level implies

self.collectionMult.oclIsUndefined() = false

end

C1

C1

u

part of

u

part of

u

part of

u

part of

context Class

@Constraint nonCyclicInheritance

 not self.allParents().includes(self)

end

C2

C2

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

CollectionMult

allParents() returns

all superclasses.

Figure 2.1: Meta-Model of the Current Version

4

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Float

Money

true

0,*

u

 responsible for

u

 uses0

1,*

0,* 1,1

skillLevel: Score
minAvailability: Score
costPerMin: Float
 posID: String

Position

averageAvailability(): Duration

0

revenues() : Money
totalUnitsInStock() : Integer

name: String
pagePerMinute: Integer
resolution: Integer
 salesPrice: Money
 serialNo: String
 partSalesPrice: Money

Printer

0

0totalRevenues() : Money
models() : Integer
 totalUnitsInStock() : Integer
 revenues() : Money

name: String
 salesPrice: Float
 serialNo: String
 partSalesPrice: Money

PeripheralDevice

0

1

1

1

M2M3

intrinsic association, instantiated

between objects on M0

intrinsic attribute, instantiated in

objects on M0

intrinsic operation, instantiated

in classes on M1

^MetaClass^

Metaclass

0 serialNo: String
 partSalesPrice: Money

CPL-844

 ^PeripheralDevice^

M1
^OrganizationalUnit^

^Printer^

totalRevenues() =
models() =

salesPrice =
race =

false
true

€ 7399.00

0

object returned by operation

object state

pagePerMinute =
resolution =
salesPrice =

40

13

1

199.00
600

0

0

Figure 2.2: Core Concepts of the Current Version and Corresponding Notation

subscript. This is mainly for the reason that the semantics of levels in multi-level language
architectures is different from that in traditional object-oriented language architectures like the
one proposed by the MOF (Meta Object Facility (MOF) Core Specification: Version 2.0 2006).

2.1 Language Core

The core of a language comprises all concepts that are defined by its abstract syntax and
semantics.

2.1.1 Contingent Levels

Every class specified in the current version of the FMMLx had to be assigned an explicit
classification level. There is a good reason for this constraint, sometimes referred to as “strict
multi-level modelling” (Atkinson and Kühne 2001, p. 28). With respect to the semantics of a
class, it makes a clear difference whether it is meant as a class on M1 or on any Mn with n > 1.
In natural language we can cope with the ambiguity of terms like “Product”, which can be
used to refer to a particular product, a type of product, or even to the set of all kinds of product
types. In conceptual modelling it is preferable to avoid ambiguity. Nevertheless, there are
cases where the need to assign a strict, invariant level to a class is problematic, because it may
prevent expressing a useful abstraction, e.g., to increase reusability. Sometimes, the design
of two classification hierarchies of similar objects results in a top level meta-class that makes
sense for both hierarchies, but that would be located on a level different in one hierarchy from
the one needed in the other hierarchy. That creates a situation that cannot be represented in
the previous version of the FMMLx , because it requires to assign one and only one level to a

5

2 New Requirements

class. The example in Fig. 2.3 illustrates this problem. In the example, the class Product on
M4 is instantiated into PeripheralDevice on M3 and into Desk on M2. While this kind of
abstraction may be seen as useful from a modeler’s perspective, it is not possible in the current
version of the language. According to the experience gathered during the last years this is not
an exotic exception, but occurs regularly.

The current version leaves three options to deal with this situation. First, one could aim at
introducing further classes that make sense. In the example in Fig. 2.3, it is conceivable to insert
a class like Furniture on M3 to bridge the gap between Desk and Product. However, if
these additional classes are not required for the targeted software system, they would increase
complexity. Apart from that, it is not always possible to insert further classes that make sense.
Second, one could introduce “dummy” levels to balance the number of levels in different
hierarchies. However, this option is hardly satisfactory, since it would result in classes that
have no specific meaning other than creating a confusing workaround. As a consequence, it
would compromise the comprehensibility and maintainability of models. Third, one could
allow for “jumping” levels. In that case, a class on level m would not only be instantiated in
objects on the level m-1, but also in objects on level below m-1, which is confusing. Finally, one
could create separate hierarchies. While this option will usually be preferable over dummy
classes, it comes with an obvious drawback. If two hierarchies have clear commonalities, they
would be neglected in the model, and, thus, compromise reuse.

RC1 In addition to having classes with a definite level, it should be possible to define classes
with a contingent level. A contingent level allows for adapting the concrete level of a class
to different contexts of use.

Rationale: It happens that two classes on different classification levels could be classified by
the same meta-class. However, this can be achieved only, if the meta-class does not have
a definite classification level. Instead, its level would have to be contingent with respect
to the instantiation context.

Priority: high

There are cases, where the instantiation level of attributes is not clear at the level where an
intrinsic attribute is defined. The class Product on M4 shown in Fig. 2.4 includes, among
others, the intrinsic attribute pricePerUnit. Often, the sales price is defined for a type of
product, since every particular exemplar should be sold at the same price. In this case, the
attribute should be instantiated on M1. However, there are also cases where sales prices are
individually defined for particular exemplars only, which would require an instantiation on
M0.

The need for intrinsic attributes with contingent instantiation levels becomes even more
obvious with contingent level classes. The diagram in Fig. 2.5 depicts the contingent level
class Product. If it is used in a software system for specialized dealership for computers

6

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

P_73992S

P_73992S

serialNo =
partSalesPrice =

^PX_66^

79.99

M3

M2

M1

 salesPrice: Float
 serialNo: String
 partSalesPrice: Float
 hasIdentity: Boolean

Product

^MetaClass^

1
0

M0

0

 salesPrice: Float
 serialNo: String
 partSalesPrice: Float
depth: Float
width: Float

Desk

^Product^

1
0

hasIdentity = true

0

 serialNo: String
 partSalesPrice: Float

Nomad

salesPrice =
depth =
width =

179.99

^Desk^

0

600

0

65.00
140.00

DN_9455T

serialNo =
partSalesPrice =

DN_9455T

^PX_66^

n.def.

 salesPrice: Float
 serialNo: String
 partSalesPrice: Float
writeOnly: Boolean

PeripheralDevice

^Product^

1
00
0

hasIdentity = true

 salesPrice: Float
 serialNo: String
 partSalesPrice: Float
resolution: Integer

Printer

^PeripheralDevice^

1
0
0

writeOnly = true

 serialNo: String
 partSalesPrice: Float

PX_66

salesPrice =
resolution =

89.99

^Printer^

0

600

0

M4

P_73992S

Figure 2.3: Illustration of Problem Produced by Strict Levels

7

2 New Requirements

output: Boolean
 voltage: Integer
 serialNum: String

PeripheralDevice

^Product^

1
0

unit: Unit
 pricePerUnit: Money

Product

^MetaClass^

1

pagePerMinute: Boolean
colour: Boolean
maxRes: Integer
 serialNum: String

Printer

^PeripheralDevice^

1

unit = #piece

voltage = 220

height: Float
width: Float
depth: Float
weight: Float
 serialNum: String

Desk

^Product^

1

unit = #piece

unit: Unit
 pricePerUnit: Money

Product

^MetaClass^

?1

0
2

Figure 2.4: Illustration of the Need for Contingent Instantiation Levels of Intrinsic Attributes

and peripheral devices, it would be instantiated into classes representing peripheral devices
or computers. If the class Product is used in a software system for a general store, it might
be more appropriate to instantiate it directly into a class on M1 that represents a particular
product type. In the first case, the intrinsic attribute qualityLevel would be instantiated on
M2, in the second case, if would have to be instantiated on M1.

RC2 It should be possible to define intrinsic attributes with a contingent instantiation level.

Rationale: It may not be possible to foresee the concrete instantiation level of an intrinsic
attribute, while knowing that it has to be instantiated somewhere down the instantiation
line.

Priority: medium

In addition to attributes, it is conceivable that intrinsic associations and intrinsic operations are
also defined with contingent instantiation levels.

RC3 It should be possible to define intrinsic associations and operations with a contingent
instantiation level.

Rationale: As with intrinsic attributes, it may not be possible to foresee the concrete instantia-
tion level.

Priority: medium

Challenge: The definition of a class as level-contingent has a substantial impact on a model’s
integrity. It is not necessarily the case that an attribute defined in a contingent class can be
instantiated on any level. If, for example, an attribute is intended to store the average customer
satisfaction with a certain bicycle model or bicycle type, it would make sense only to instantiate
it above M1. Therefore, it may be required to add a minimum instantiation level. Similarly, the
instantiation level of an intrinsic property can be defined on a level higher than the level of a
class directly instantiated from a contingent class. For example, it would not be possible to
instantiate the intrinsic operation averagePrice on the intended level 2. At the same time, it
would not make sense on M1.

8

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

minQualityLevel: Level
 qualityLevel: Level
 serialNum: String
 salesPrice: Float

PeripheralDevice

^Product^

2
0

pagesPerMinute: Boolean
color: Boolean
resolution: Integer
 serialNum: String
 salesPrice: Float

Printer

^PeripheralDevice^

0

 serialNum: String

XP-600C

^Printer^

0

color = #true

pagesPerMinute = 90

resolution = 600

qualityLevel = #med

minQualityLevel: Level
 qualityLevel: Level
 serialNum: String
 salesPrice: Float

Product
^MetaClass^

0

unit: Unit
 pricePerUnit: Money

Product

^MetaClass^

?

minQualityLevel = #med

1

1

1

salesPrice = 99.99

 serialNum: String

DrillingMachineMK18

^Product^

0

qualityLevel = #high

salesPrice = 75.85

?

Figure 2.5: Contingent Instantiation Levels of Intrinsic Attributes in Case of Contingent Level Classes

9

2 New Requirements

RC4 It should be possible to define constraints on the intended instantiation level. These could
address a minimum or maximum number of instantiation steps, or a set of alternative
instantiation levels, e.g., level 1 or level 2.

Rationale: It is conceivable that at the time of specifying a class on level n, there is not sufficient
knowledge available to exactly define an intended instantiation level. But usually at least
some restrictions on possible instantiation levels will be known. Hence, the requirements
follows from the principle that all knowledge available on a certain level should be
specified there.

Priority: medium

Including constraints on intended instantiation levels into the language does not only add
more concepts, but will also increase the complexity of the concrete syntax. Therefore, it seems
appropriate to first do with an explicit specification of these constraints with the XOCL. If
it turns out that these constraints are required often enough, they can still be built into the
language.

Challenge: All three requirements demand for a cross-level constraint language, which will be
available only with the new version of the XOCL.

2.1.2 “Classless” Classes

Like with any object-oriented models, the design of multi-level models requires the creation
of classes. In traditional, one-level models, a class is implicitly instantiated from one specific
meta-class. In multi-level models, a new class is instantiated from a class that exists in the
model already. As a consequence, the design of a multi-level model requires a top-down
approach, that is, one has to start with classes on the topmost classification level. Then, classes
on lower levels have to be added step by step. There are cases where it may be perceived as
inappropriate to be forced to a top-down approach. Sometimes, the topmost classes are not
known in advance. Instead, they may result through an act of abstraction from lower level
classes. In other words, it would be helpful, if a top-down approach was supplemented by
a bottom-up approach. That would require allowing for the preliminary creation of classes
without an explicit meta-class.

RC5 It should be possible to define preliminary classes without a meta-class.

Rationale: Sometimes, a bottom-up approach seems to be more appropriate than a top-down
approach.

Priority: high

10

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Challenge: From a technical perspective, it is not possible that a class does not have a meta-class.
Therefore, some preliminary meta-class has to be assigned, which would be later replaced
by the final meta-class. Hence, a corresponding modelling tool needs to support meta-class
migration.

2.1.3 Distinction of Instantiation Levels within Associations

Like attributes and operations, associations could be defined as intrinsic, too. The example in
Fig. 2.2 illustrates the idea. The classes Printer and Position are both located on M2, that
is, they are supposed to be instantiated into process types and position types. The intrinsic
association between both is to express that a particular process instance on M0 is assigned to a
particular instance of a position type, also on M0. This is indicated by the zero printed in white
on the black square next to the association name. The specification of intrinsic associations
in the meta-model of the current version (Fig. 2.1) was based on the assumption that the
instantiation level of an intrinsic association has to be the same with both associated classes. It
turned out, however, that this assumption is not appropriate. It is not a rare exception that an
association should be instantiated on different levels with both associated classes. The example
in Fig. 2.2 includes the association “responsible for”. It is to express that a particular position
instance on M0 is responsible for one to many types of printers on M1.

RC6 Intrinsic associations should allow the specification of different instantiation levels for
both participating classes.

Rationale: It is common in natural language to link two concepts (or object references) on differ-
ent classification levels in one sentence. Accordingly, it can be a relevant requirement to
link two objects on different classification levels in an multi-level model. If the association
can be defined on a higher level already, that is, if the association is intrinsic, it follows
directly that it must be possible to support different instantiation levels.

Priority: high

This feature is already part of the current implementation of the FMMLx in the Xmodeler.

2.1.4 Deferred Specification of Associations

Intrinsic associations enable expressing knowledge about classes on a higher level of classifi-
cation. We know, for instance, that some kind of shock absorbers are mounted to every car.
This could be expressed as in the example in Fig. 2.7 on M3. The association mounted_on is to
be instantiated on M1, that is, it allows the definition of the shock absorber types that can be
mounted on a certain car model. However, at a higher level of classification one will usually
not know the particular class(es) that are part of an intrinsic association at the level where it is

11

2 New Requirements

platform: String
 noOfDoors: Integer
 weight: Float
 power: Integer
 serialNo: String

Car
^Vehicle^

1

1
1

numOfWheels = 4

0

 noOfDoors: Integer
 weight: Float
 power: Integer
 serialNo: String

WB-Series-20
^Car^

1
1
1

platform = X100-C

0

 serialNo: String

WB-X15

noOfDoors =
weight =
power =

1580.5
27.5

^WB-Series-20^

0

145

tech: [#flat, #coil, #air]
costLevel: Level
 weight: Float
 range: Integer

Suspension

^CarComponent^

1
1

 weight: Float
 range: Integer
 numOfCyl: Integer

CoilSpring
^Suspension^

1
1

tech = #coil

costLevel = #low

 weight: Float
 range: Integer
 maxComp: Float

AirSuspension
^Suspension^

1
1

tech = #coil

costLevel = #low

Eastwind-R50

weight =
range =
numOfCyl =

138
10.5

^CoilSpring^

1

LuxAir-X4

weight =
range =
maxComp =

153
13.2

^AirSuspension^

14.8

1,*

mountable_on

1,*

u

11

?

mounted_on

?

u

Figure 2.6: Deferred Specification of Multiplicities

12

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

platform: String
 noOfDoors: Integer
 weight: Float
 power: Integer
 serialNo: String

Car
^Vehicle^

1

1
1

numOfWheels = 4

0

 noOfDoors: Integer
 weight: Float
 power: Integer
 serialNo: String

WB-Series-20
^Car^

1
1
1

platform = X100-C

0

 serialNo: String

WB-X15

noOfDoors =
weight =
power =

1580.5
27.5

^WB-Series-20^

0

145

tech: [#flat, #coil, #air]
costLevel: Level
 weight: Float
 range: Integer

Suspension

^CarComponent^

1
1

 weight: Float
 range: Integer
 numOfCyl: Integer

CoilSpring
^Suspension^

1
1

tech = #coil

costLevel = #low

 weight: Float
 range: Integer
 maxComp: Float

AirSuspension
^Suspension^

1
1

tech = #coil

costLevel = #low

Eastwind-R50

weight =
range =
numOfCyl =

138
10.5

^CoilSpring^

1

LuxAir-X4

weight =
range =
maxComp =

153
13.2

^AirSuspension^

14.8

?

mountable_on

?

u

11

?

mounted_on

?

u

Figure 2.7: Different Instantiation Levels of an Intrinsic Association

to be instantiated. The example model in Fig. 2.7 would allow for any kind of car model being
associated with any kind of shock absorber. However, it may be a strict rule that, e.g., a certain
car series (in the example modelled on M2) is produced with air suspension only. That would
reduce the set of possible classes to form associations with classes that represent models of that
car series to instances of AirSuspension. Furthermore, it may be characteristic of a car series
that it does not allow for more than two types of shock absorbers. Since these restrictions may
vary from car series to car series, they cannot be expressed with the general definition of the
intrinsic association. As far as the possible classes on the level above the intended instantiation
is concerned, there needs to be some kind of dynamically growing constraint. With every
instantiation step the range of possible classes (and the respective instances and instances
thereof) is reduced. This additional knowledge should be accounted for with the subsequent
instantiation steps. The multiplicities of an intrinsic association may also not be predictable. A
certain car series, for example, may be characterized by the rule to not allow for more than
two types of air suspension. In that case, the specification of a particular multiplicity at the
level where the intrinsic association is defined, would be misleading. To cope with such a
situation, it would be useful to explicitly defer the specification of multiplicities of intrinsic
associations.

13

2 New Requirements

RC7 The definition of intrinsic associations should imply that corresponding constraints are
refined with every instantiation step.

Rationale: By their very nature, intrinsic associations lack certain knowledge about the actual
association at the level where they are defined for. At the same time, with every in-
stantiation step, the range of possible options decreases. Hence, refining corresponding
constraints dynamically would be an important contribution to system integrity.

Priority: high

RC8 The language specification should allow for defining intrinsic associations without spe-
cific multiplicities. In other words, it should be possible to defer the specification of
multiplicities to a lower level.

Rationale: In cases where the multiplicities of an intrinsic association at the intended association
level may vary, the definition of a particular multiplicity would create ambiguity or even
a contradiction, hence, a serious threat to a system’s integrity.

Priority: high

The following requirement describes a special case of the previous one.

RC9 If absolute minimum or maximum cardinalities are known, they should serve as con-
straints for the final definition of multiplicities on the intended instantiation level. That
means that the actual cardinalities specified on the intended instantiation level have to
be within this range. As a consequence, it needs to be possible to mark cardinalities as
boundary values.

Rationale: It should be possible to specify all knowledge about multiplicities of associations
that is available.

Priority: high

Challenge: All three requirements can be satisfied only with a cross-level constraint language,
which will be available only with the new version of the XOCL.

2.1.5 Avoiding Redundant Specification

It happens that classes within a classification hierarchy share the same properties, that is, the
same attributes, operations, or associations. A frequent example is an attribute like “name”,
which may be required for a class, its instances and all further instances down the instantiation
line. Further examples comprise operations that perform statistics on object populations. It
might be required for every class within a classification hierarchy to provide methods that
calculate the number of direct instances or the cumulated number of all instances of instances
of a class (see example in Fig. 2.8). Normally, this would be a clear case of inheritance. In

14

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

numberOfInstances() : Integer
numberOfAllRecInstances() : Integer

output: Boolean
name: String
 voltage: Integer
 serialNum: String

PeripheralDevice
^Product^

1
0

numberOfInstances() : Integer
numberOfAllRecInstance() : Integer

name: String
unit: Unit
 pricePerUnit: Money

Product

^MetaClass^

1

pagePerMinute: Boolean
colour: Boolean
maxRes: Integer
 serialNum: String

Printer

^PeripheralDevice^

1

unit = #piece

voltage = 220

availability: Level
 specificWeight: Float

XP-600C

^Printer^

0

alloy = „2011"

corrodes = false

Figure 2.8: Example of Repeated Specification of the Same Properties

the current version, it was, e.g., not possible to indicate that a property of a class should
be inherited instead of being instantiated (either directly or deferred in case of an intrinsic
attribute). As a consequence, those features that are also required for instances of classes have
to be duplicated, leading to the well-known problems caused by redundancy.

RC10 It should be possible to indicate that certain properties of a class are to be inherited to
its instances.

Rationale: Inheriting features where it is appropriate enables preventing redundancy.
Note that inheriting properties is different from intrinsic properties. An intrinsic property
is not directly instantiated where it is defined, but only at the specified instantiation
level. An inherited property can be part of many classes. Therefore, it can be instantiated
multiple times. In an ideal case, the implementation of operations can be inherited, too
(as it would be the case with the example in Fig. 2.8).

Priority: high

In the current implementation, this problem is relaxed implicitly. Certain properties, such
as the attribute name, are defined with the central class in Xcore Class. Every class that is
defined with the FMMLx inherits through MetaClass from Class (see Fig. 2.1). However,
this approach works only for properties that are generic enough to be inherited to all classes of
an entire system.

RC11 Intrinsic properties must not be explicitly inherited, since they are passed to instances
anyway until the intended instantiation level is reached.

Rationale: Explicit inheritance of intrinsic properties would be redundant and would therefore
compromise the comprehensibility of a model.

15

2 New Requirements

Name Class Problem
price Float a price could be negative or be unreasonable large
unit String any string could be used, typos would result in new units;

knowledge about converting units could not be incorporated
currency String any string could be used, typos would result in new currencies;

additional knowledge such as abbreviations, conversion of
currencies, etc. would not be included.

level Integer depending on the scale, the attribute may allow for a few
values only, e.g. 1 - 10; however, that cannot be expressed

multiplicity Integer would not allow for representing a symbol for unlimited such
as “*”

multiplicity Char would allow for representing a symbol for unlimited, however,
at the price to give up on arithmetics which are required for
checking upper bound against lower bound.

color String would allow for any string and would not allow for including
color-specific information such as a specific color model.

Table 2.1: Problems Caused by Inappropriate Semantics of Attribute Classes

Priority: high

2.1.6 Auxiliary (Meta-) Classes

Attributes are to a large extent specified with a small set of generic data types or classes. It
would be possible to define more specific classes for this purpose. However, many modellers
would regard that as too much effort. As a consequence, attributes remain underspecified
in most cases. This will usually create a threat to system integrity. The examples in Table 2.1
illustrate this problem.

RC12 The language should be extended with auxiliary classes that represent specific con-
cepts that are often needed. They include various units of measurement, currencies,
multiplicities, and, more specific, economic concepts such as price.

Rationale: The availability of thoroughly defined auxiliary classes contributes to model integrity
and modelling productivity.

Priority: high

RC13 The definition of specific auxiliary classes should be supported. That includes the
definition of classes which represent enumerations or ranges of elements of a certain
type/class.

Rationale: This is an incentive for software developers to define specific auxiliary classes and,
thus, to improve model and system integrity.

16

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Priority: high

The current implementation of the FMMLx includes already various auxiliary classes, but no
support for the definition of specific auxiliary classes.

2.1.7 Differentiation of Uni- and Bi-Directional Associations

From a conceptual perspective, there is no need to qualify an association as uni- or bi-directional.
However, as soon as a model is to be executed or mapped to code, a corresponding decision
has to be made.

RC14 The specification of an association should allow for defining whether the association is
bi-directional or uni-directional.

Rationale: Even though this information is required for implementation only, it should be
possible to add it to a conceptual model to prepare for a smooth transition to design and
implementation. This is even more the case for an executable modelling language like
the FMMLx , since there is no clear borderline between models and code anymore.

Priority: high

2.1.8 Support of Delegation

Delegation is an important concept to promote reuse and flexibility (Szyperski, Gruntz, and
Murer 2011). Its use in object-oriented languages is mainly motivated by counter-intuitive
effects of inheritance, which create a threat to system integrity. These effects are caused by
the fact that, different from logic and natural language, every object is of one and one class
only. Fig. 2.9 illustrates the problem caused by an inappropriate, yet intuitively correct use of
inheritance.

Delegation is an association between two classes, where the instances of one class serve as
delegators, the instances of the other class as delegatee objects. A delegator object “inherits” be-
haviour and state from the corresponding delegatee object. The example in Fig. 2.10 illustrates
the principle idea of delegation. Whenever an object of the class Student receives a message
it cannot respond to, the message is delegated to the corresponding delegatee object of the
Person. The object that is returned by the method in the object of the class Person is returned
to the object that initially sent the message to the delegator object. Therefore, the interface of
a delegator object is not only extended by the interface of a corresponding delegatee object,
but it also has access to the delegator’s state. Hence, delegation allows to mimic the semantics
of specialization in logic, where an object of class B, which is specialized from class A, is an
instance not only of B, but also of A. Delegation is not only useful to connect objects on M0, but

17

2 New Requirements

Figure 2.9: Counter-Intuitive Effects of Inheritance

can be applied to classes on any classification level, too. A common use case for connecting
classes is the definition of a variant as a delegator of a core artefact (see Fig. 2.11)

RC15 Delegation should be enabled between classes on any classification level as a specific
association between two classes on any level.

Rationale: In object-oriented system, delegation is an important abstraction that allows to
compensate for misconceptions of inheritance.
Note that further, more specific, requirements would be needed for a comprehensive
specification of delegation. An elaborate analysis of delegation is subject of a further
publication that is currently under review. Apart from that, a preliminary implementation
of delegation exists already in the current version of the language implementation.

Priority: high

2.1.9 Support for the Specification of Further Association Types

Associations are of pivotal relevance for the design of languages and models. Currently,
association is not a meta-concept. The concept of an association is used, but not defined by
XCore. Hence, it does not allow for the instantiation of more specific association types. As a
consequence, there is only one generic kind of association provided with the current version of
the FMMLx . If an association is characterized by specific semantics, it has to be expressed by
additional constraints. It would be a clear improvement, if the language enabled the definition
of specific association types. These could be more general types like aggregation, composition,
and delegation. Note that delegation has been addressed by a dedicated requirements, because
of its outstanding relevance. Table 2.2 gives an overview of general and association types.

In addition to general association types, there are domain-specific association types. Their
semantics depends on domain-specific requirements, which may vary. Hence, the language

18

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

getFirstName()

„John"

getFirstName()

firstName = "John"
lastName = "Doe"
dateOfBirth = 1987-10-14

p1: Person

„John"

1

3

2

4

getFirstName() : String
...()

firstName: String
lastName: String
dateOfBirth: Date

Person

getMatricNo() : String
...()

matricNo: String
enrolled: Date
credits: Integer

Student

matricNo = T3-82644
enrolled: 2017-1-5
credits: 18

s1: Student

Delegation

DelegatorDelegatee

Figure 2.10: Illustration of Delegation

getName() : String
...()

name: String
interface: String
weight: Float
resHorizontal: Integer
resVertical: Integer
timePerPage: Integer

Scanner

getName(): String()
...()

name: String
weight: Float
pagesPerMin: Integer
maxStack: Integer

FeederScanner

weight = 3.5
pagesPerMin = 14
maxStack = 40

SC-500-F10: FeederScanner

Core Product Variant

getWeight()

3.5

getInterface()
„USB 2.0"

getInterface()

interface = "USB 2.0"
weight = 3.2
resHorizontal = 4800
resVertical = 9600
timePerPage = 4

SC-500: Scanner

„USB 2.0"
1

2

3

2

4

1

getName() : String
...()

name: String
interface: String
weight: Float
resHorizontal: Integer
resVertical: Integer
timePerPage: Integer

Scanner

getName(): String()
...()

name: String
weight: Float
pagesPerMin: Integer
maxStack: Integer

FeederScanner

weight = 3.5
pagesPerMin = 14
maxStack = 40

SC-500-F10: FeederScanner

Core Product Variant

getWeight()

3.5

getInterface()
„USB 2.0"

getInterface()

interface = "USB 2.0"
weight = 3.2
resHorizontal = 4800
resVertical = 9600
timePerPage = 4

SC-500: Scanner

„USB 2.0"
1

2

3

2

4

1

Figure 2.11: Different Instantiation Levels of an Intrinsic Association

19

2 New Requirements

Name Description Semantics Variants Behaviour
interaction no specific seman-

tics
none, restricted to
cardinalities

state depen-
dency, e.g.,
marriage, sex

transparent cre-
ation of links

aggregation particular objects
that are part of an-
other object, e.g., a
wheel that is part
of a particular car

special case of in-
teraction

state de-
pendency;
dependent on
corresponding
composition,
e.g., restricted
to instances of
a certain class

transparent cre-
ation of links

composition an abstraction
over aggregation,
e.g., the con-
struction of a car
model may allow
for 1 .. * wheel
types

similar to aggrega-
tion, however, on
a different level of
abstraction (a type
is an aggregation
of other types)

state depen-
dency, e.g., any
type of wheel
that is certified
for a certain
speed

transparent cre-
ation of links in-
cluding owner-
ship

delegation transparently
access data or
behaviour of
another object

special case of
interaction; del-
egator delegates
behaviour (and,
hence, state) to
delegatee

state depen-
dency, e.g., age,
qualification,
authorization

transparent cre-
ation of links;
object cre-
ation; message
dispatch

delegation to
class

transparently
access data or
behaviour that
is common to
all instances of
a class, e.g., a
price of a product
exemplar that is
specified with the
corresponding
class

similar to delega-
tion, however on
a different level of
abstraction. Dele-
gator (object) dele-
gates behaviour to
its class

delegation may
be restricted to
classes that are
marked as dele-
gatees

transparent cre-
ation of links;
object creation;
message dis-
patch; requires
rules to define
dispatch order

documentation linking to an ob-
ject that needs to
be documented at
the time the link
was created

special case of
interaction (or
aggregation),
the linked ob-
ject must not be
changed during
the lifetime of the
association, e.g., a
product linked to
an invoice

partial doc-
umentation
only, e.g., in
an invoice,
documenta-
tion could be
restricted to
products

as soon as
the final state
of an object
that is to be
documented, is
committed, a
copy needs to
be created and
set to read-only
mode.

Table 2.2: Example Association Types

20

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Name Kinds of classes Description Variations
married to Person, Person marriage depends on cer-

tain requirements, e.g.,
sex, age

different constraints on sex,
multiplicities, age

holds Person, Driving Li-
cence

holding a driving licence
requires people to satisfy
certain requirements

constraints on min. and
max. age, gender, different
types of driving licences

reminder to Reminder, Cus-
tomer

depends on the existence
of a valid debt claim,
term of payment overdue

term of payment, differ-
ent kinds of debt claim, re-
minder charges, dunning
level

Table 2.3: Examples of Domain-Specific Association Types

should offer meta-association types that allow the creation of various association types of the
same kind. Also, the semantics of a domain-specific association type may depend on properties
of the associated classes. However, the names of these classes and the corresponding properties
may not be known in advance. Therefore, a language for the definition of specific association
types should allow for using these names for the instantiation of an association type. Table 2.3
illustrates the idea of domain-specific association types with a few examples.

RC16 The language should provide generic association types. At best, these types would be
instantiated from an association meta-type.

Rationale: Including generic association types promotes modelling productivity and model
integrity. Meta-association types provide modellers with more flexibility, since they allow
to vary the semantics of generic association types.

Priority: medium

RC17 It should be possible to define domain-specific association types. In order to cover
the variance of domain-specific association types, it could be helpful, if a language
provides meta-association types on a higher level, that would allow the instantiation of
meta-association types.

Rationale: The specification of domain-specific association types promotes model integrity.
Priority: medium

Challenge: The specification of meta-associations is very demanding, because association types
can hardly be defined on their own, that is, without regard to the classes they connect. For
meta-associations, that would require adequate meta-classes, which, however, can hardly be
predicted in advance.

21

2 New Requirements

2.1.10 Multiplicities of Attributes

There are cases where an attribute may be represented by more than one object of the attribute’s
class. For example, a person may have more than one telephone number, a bicycle frame could
be painted with three different colours, etc.

RC18 It should be possible to specify multiplicities of attributes.

Rationale: Without this feature, it is hardly possible to adequately model cases where attributes
are characterized by more than one object of a certain class.
There are not too many cases, where this requirement is relevant.

Priority: medium

2.1.11 Deferred Instantiation of Attribute Classes

In the current version, an attribute needs to be specified by a class on M1. In most cases, this
proved to be sufficient. However, with the specification of higher level classes one may know
the existence of an intrinsic attribute without knowing its specific class. Instead, one may know
a meta-class the attribute’s class is instantiated from directly or indirectly, which corresponds
directly to the instantiation of classes involved in an intrinsic association. Fig. 2.12 shows
an example: we know that a bicycle frame is made of a certain material. Let us assume that
BicycleFrame is located on M3. It is then instantiated into different kinds of frames, such as
racing frame or mountain bike frame, which are subsequently instantiated into certain types of
frames. A bicycle frame in general is made of some kind of material, which could be expressed
by the class Material on M3. This meta class could then be instantiated into different kinds
of material, such as metal or synthetics, which could be further instantiated into, e.g., steel,
aluminum or carbon. The example in Fig. 2.12 shows the instantiation down to a certain alloy
of aluminum on M0. Note that one could also argue for placing it on M1, because it rather
represents a sort or type than a particular object. However, since it cannot be instantiated
further, one might, for pragmatic reasons, decide placing it on M0.

RC19 It should be possible to specify intrinsic attributes through classes on levels higher than
M1 together with an intended instantiation level of those classes.

Rationale: There are cases where it is not possible to clearly specify the class an intrinsic at-
tribute will have at the level where it is supposed to be instantiated.
Due to our experience with the current version of the FMMLx the lack of deep instantia-
tion of attributes was not a major shortcoming.

Priority: low

22

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

synthetic: Boolean
 specificWeight: Float
 rigidity: Float

Material

^Product^

1
0

corrodes: Boolean
alloy: String
 specificWeight: Float
 rigidity: Float

Metal
^Material^

0

synthetic = false

Alum2011: Aluminum

availability =
specificWeight = 2.78

#high

^Aluminum^

1

1

availability: Level
 specificWeight: Float

Aluminum

^Metal^

0

alloy = „2011"

corrodes = false

 color: Color
 material: Material
 weight: Float
 mudMount: Boolean
 stockNo: String

BicycleFork
^Component^

1
1
1
2
0

Figure 2.12: Illustration of Deep Instantiation of Attributes

2.1.12 Specification of Dependencies between Model Elements

The more semantics included in a model, the better are the chances to have it properly in-
terpreted by a machine and to modify without compromising its integrity. Sometimes, the
analysis of model elements requires additional information, which cannot be expressed by a
modelling language.

Properties of a class in a multi-level system may serve different purposes. An attribute that is
instantiated in a class may represent properties of that class, a property value shared by all
instances of the class, or constraints on possible property values within instances. The example
in Fig. 2.13 illustrates this issue with respect to attributes. The attribute minQualityLevel is
instantiated with all instances and serves the specification of a constraint on possible values of
instances of these instances (all types of printers in that system). The attribute serialNum,
though being an intrinsic attribute, is supposed to be instantiated in individual values for each
instance (particular printers). Finally, attributes like pagesPerMin are to be instantiated into
values that are shared by all instances of the class a particular value was assigned to.

23

2 New Requirements

minQualityLevel: Level
 qualityLevel: Level
 serialNum: String

PeripheralDevice

^Product^

1
0

numberOfInstances() : Integer
numberOfAllRecInstance() : Integer

name: String
unit: Unit
 pricePerUnit: Money

Product

^MetaClass^

1

pagePerMinute: Boolean
colour: Boolean
maxRes: Integer
 serialNum: String

Printer

^PeripheralDevice^

1

voltage = 220

availability: Level
 specificWeight: Float

XP-600C

^Printer^

0

alloy = „2011"

corrodes = false

pagesPerMinute: Boolean
color: Boolean
resolution: Integer
 serialNum: String

Printer

^PeripheralDevice^
1

0

 serialNum: String

XP-600C

^Printer^

0

color = #true

pagesPerMinute = 90

resolution = 600

minQualityLevel = #med

constraint on
values of instances

of instances

serves representing values
that are shared by all
instances of instances

qualityLevel = #high

serves representing particular
instance property values0

color = #true

pagesPerMinute = 90

resolution = 600

qualityLevel = #high Figure 2.13: Different Kinds of Attributes

Similar distinctions can be made for operations. The values delivered or used by access
operations would represent corresponding aspects. Associations may also be used to create
links between an object (e.g., representing a country) and a class (e.g., representing a specific
product type), where the link is semantically shared by all its instances.

RC20 The new version should allow for clearly distinguishing between attributes that are
regularly instantiated into individual values of instances, that are instantiated into values
of instances that actually represent common values of their instances, and those that
serve the specification of constraints on attribute values. At the same time, corresponding
access operations should be qualified accordingly.

Rationale: These different kind of properties have specific semantics that would be lost, if there
was no way to express it somehow, which in turn could compromise the integrity of
systems.
This requirement is fairly easy to satisfy and promises clear benefits.

Priority: high

There are also different kinds of operations. Generic categories of operations include instantia-
tion, read access, write access, update or release. Furthermore, there are domain-specific categories

24

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

of operations, e.g., debit, booking, planning, etc. If an operation is supplemented with informa-
tion about the categories it belongs to, more meaningful analysis is enabled. Furthermore, it
can contribute to model integrity. If, e.g., all booking operations of a ERP system need to be up-
dated due to new requirements, a corresponding category would make sure to find all affected
operations. This would foster maintainability, and as a consequence, system integrity.

RC21 It should be possible to assign categories to operations.

Rationale: Distinguishing categories of operations enables more meaningful model queries and
fosters models integrity.

Priority: high

Like most modelling languages, the FMMLx does not allow for expressing certain dependencies
between model elements. Access operations are particularly challenging with respect to model
changes. The name of an access operation will usually reflect the name of the attribute it refers
to, or the name of an associated class, the objects of which are accessed by an operation. If
attributes or associations are deleted or modified, the corresponding access attributes need to
be deleted or modified, too. A common approach to find the affected operations depends on
naming conventions. While naming conventions are useful to foster the readability of a model,
depending on them for finding affected operations is not entirely satisfactory. First, it would
not allow to use names for operations other than those defined by the naming conventions.
Second, it would require searching for a certain name pattern in all operations of a class. If the
representation of an operation is augmented by the specification of the attribute or associated
class it allows to access (in addition to the type of access), finding affected operations would be
clearly more convenient.

RC22 It should be possible to link access operations to the objects they refer to, such as
attributes or associations.

Rationale: This additional information would facilitate the updating of operations after relevant
aspects of the reference object had been changed.

Priority: high

Dependencies may also exist between associations, which recommends making them explicit,
too.

RC23 The new version should support the specification of an association as dependant of
another one. That is, the instantiation of the dependant association must not happen
without the association it depends on being instantiated, too.

Rationale: Including a corresponding concept in the language does not only free modellers
from the specification of a corresponding constraint, it also increases the likelihood that
the dependency is explicitly modelled at all.

25

2 New Requirements

part_of 00

1 1

 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,*

 getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

part_of 00

1 1
 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,* getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

certified_for 00

1,* 0,*

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 0,1

1,* 0,1

takesExam_at

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 1,1

1,*

1,1

persNo: String

StudentAssistant

works_for

Figure 2.14: Illustration of Association Specialization with the UML

Priority: medium

In addition generic dependencies, there may be more specific kinds of dependencies between
associations. A known example of this kind is so called association specialization in the UML.
If an association A1 is specialized from another association A0 between the classes C1 and
C2, then the A1 connects C1 and C2, too, or subclasses of the two (OMG 2010, p. 112). The
idea is that the set of links instantiated from the specialized association is a subset of the links
instantiated from the generalized association. Fig. 2.14 illustrates this idea.

However, this would not be the case for specialized associations that connect subclasses of
the classes connected by the generalized association, since in object-oriented systems where
an object is of one and only one class, an instance of a subclass cannot be an instance of a
superclass at the same time. Therefore, the UML specification of association specialization is
not satisfactory. Instead of allowing for subclasses in the specialized association, delegation
would be a better choice (see Fig. 2.15). The class StudentAssistant defines roles (delega-
tors) of the role filler (delegatee) class Student. Every instance of StudentAssistant is
linked to exactly one corresponding instance of Student, and has transparent access to its
state. Therefore, the instances of a role class can be seen as a subset of the instances of the
corresponding role filler class. To be more precise: the instances the role filler class, instances
of the role class are connected to, are a subset of all instances of the role filler class. In this case,
association specialization would imply the constraint that only those instances of a role class
may be connected to instances of the associated class that are connected to instances of role
filler class that participates in the generalized association.

RC24 It should be possible to express a specialization of an association as an association
between the same classes that are part of the generalized association.

Rationale: There is need for this specific kind of dependency. Providing a corresponding
concept with the language contributes to productivity and integrity.

Priority: medium

RC25 If the specialization of associations demands for subclasses of classes involved in the
generalized association, the use of delegation should be supported. That means that the
following constraint is enforced: only those instances of a role class may be linked to

26

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

part_of 00

1 1

 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,*

 getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

part_of 00

1 1
 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,* getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

certified_for 00

1,* 0,*

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 0,1

1,* 0,1

takesExam_at

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 1,1

1,*

1,1

persNo: String

StudentAssistant

works_for

Figure 2.15: Association Specialization and Delegation

part_of 00

1 1

 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,*

 getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

part_of 00

1 1
 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,* getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

certified_for 00

1,* 0,*

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 0,1

1,* 0,1

takesExam_at

Figure 2.16: Illustration of Dependency from an Association on a Higher Level

instances of the associated class the corresponding instance of the role filler class are
linked to.

Rationale: Supporting this specific kind of association specialization should support modelling
convenience and model integrity.

Priority: medium

In multi-level systems, dependencies may exist between associations on different levels. The
example in Fig. 2.16 shows two intrinsic associations between a class representing types of
professional racing bicycles and a class that represents types of light weight racing forks.
On M1, that is on the level of particular types, a fork type may be associated with multiple
bicycle types, et vice versa. On M0, each object representing a particular racing bike linked
to exactly one object representing a particular fork. Apparently, the existence of these two
associations recommends the interpretation that only such a fork can be mounted to a bike
the type of which is in the set of fork types associated with the type of the bike. This is indeed
the intended semantics of the shown intrinsic associations. However, it is not sufficiently
defined by two associations with one association on one level higher than the other one. It
is not unambiguously defined that the association part of corresponds to the higher level
association composed of.

27

2 New Requirements

part_of 00

1 1

 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,*

 getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

part_of 00

1 1
 color: Color
 material: [#alum, #carbon]
 weight: Float
 stockNo: String

LightFork

1,1 0,1

0,*1,* getFrontWheel() : Wheel
 getBackWheel() : Wheel

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ProRacer

1
1

1

1

^RacingFork^
^RacingBike^

1
1
1

mudMount = false

0

UCIcertified = true

0

composed_of

u

certified_for 11

1,* 0,*

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 0,1

1,* 0,1

takesExam_at

firstName: String
lastName: String
matNo: String

Student

name: String

University
enrolled_at

1,* 1,1

1,*

1,1

persNo: String

StudentAssistant

works_for

Figure 2.17: Illustration of Ambiguity Related to Associations in Multi-Level Models

The slightly modified example in Fig. 2.17 makes this ambiguity more obvious. Without
further constraints, the formal semantics do not define clearly whether part of corresponds
to composed of or to certified for. At the same time it also illustrates the need for
association specialization on higher levels of classification. Apparently, it would make sense to
specify composed of as a specialization of certified for.

RC26 The new version of the FMMLx should allow for defining dependencies between associ-
ations on different classification levels. In particular, it should be possible to define an
association on level m as a refinement of an association on level m+1.

Rationale: This concept allows preventing ambiguities arising from intrinsic associations (see
example in Fig. 2.17).

Priority: high

2.2 Analysis and Management of Models

Management and analysis of a model depend chiefly on the information represented in a
model. In the current version, model management was not accounted for because it is not part
of the core language specification. However, with respect to the design of modelling tools,
management and analysis of models are important. To support the analysis and management
of models, concepts are required that, among others, enable sophisticated (statistical) analysis
on models, and support advanced model navigation as well as queries on models. Furthermore,
there should be concepts that allow for user management, backtracking of a model’s history,
and the management of model versions.

2.2.1 Model Analysis

The Xmodeler does not only feature a complete programming language (XOCL) but also a
comprehensive extension of classes with numerous methods that facilitate elaborate model
analysis. The following examples show how to create reports on a model Products:

28

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Object Operation Returns
Model averageNumOfAttributes() average number of attributes per class without

inherited attributes
Model averageNumOfAllAttributes() average number of attributes per class including

inherited attributes
Model averageNumOfIntrinsicAttributes() average number of attributes per class without

inherited attributes
Model highestClassificationLevel() highest classification level of all classes
Model averageClassificationLevel() average classification level of all classes
Model allDependentModels() all models that depend on the model
Class allOf() all classes and meta-classes of a class up to the root

class
Class allTransInstances() all instances of a class and all instances of instances

down to M0
Class intrinsicAttributes() intrinsic attributes of a class without inherited at-

tributes
Class allIntrinsicAttributes() intrinsic attributes of a class with inherited at-

tributes

Table 2.4: Examples of Operations to Support Model Analysis

Products . c l a s s e s . s i z e () re turns the number of c l a s s e s
d : = 0 ; Products . c l a s s e s−>c o l l e c t (c | d:= d + c . a t t r i b u t e s . s i z e ()) ;

r e turns number of a l l a t t r i b u t e s

While XOCL is powerful, more complex analysis scenarios require a considerable amount
of coding. Providing operations that address relevant analysis scenarios with the language
would contribute not only to making model analysis more convenient, but also more reliable.
The current version of XCore and the FMMLx offer already a few operations of this kind,
e.g., allInstances that delivers the set of all instances of a class. Multi-level models are
more complex than one-level models, which demands for additional types of analysis. The
operations in Table 2.4 illustrate how model analysis could be supported with dedicated
operations. Note that the list is not comprehensive.

In addition to operations that address particular analysis needs, it would be helpful to simplify
the use of XOCL for retrieval purposes through the specification of a more focused retrieval
language that accounts for peculiarities of multi-level models. The following queries serve
to illustrate the idea through a few examples. That does not mean that the required query
language should feature a corresponding concrete syntax.

a l l o b j e c t s of <c l a s s name> where <a t t r i b u t e name>. value > value
a l l c l a s s e s where <a t t r i b u t e name> = S t r i n g
aggregate a l l <a t t r i b u t e name>. value of <c l a s s name>
average of a l l <a t t r i b u t e name>. value of <c l a s s name>
s t a n d a r d d e v i t a t i o n of a l l <a t t r i b u t e name>. value of <c l a s s name>

29

2 New Requirements

a l l c l a s s e s t h a t implement <operat ion name>
a l l operat ions t h a t send message <operat ion name>

RT1 The language should include operations for advanced model analysis. That comprises
the creation of model statistics including those relevant for multi-level models.

Rationale: Writing code to analyse models will often be regarded as too time-consuming.
Adding respective operations as a default interface to models and to all classes makes
model analysis more convenient and more reliable.

Priority: high

RT2 The language should be supplemented by a specific query language that allows querying
all properties of a multi-level model and that is clearly easier to use than the XOCL.

Rationale: Queries on multi-level models are of crucial importance not only with regard to
traditional model analysis, but also for retrieving objects and object values on all classifi-
cation levels covered by a multi-level model.
The upcoming, multi-level version of the XOCL will allow querying all aspects of a
multi-level model. However, it may be useful to define a more specific language, as well
as additional tools that enable more convenient queries.

Priority: medium

2.2.2 Support for Changes

Conceptual models evolve over time. Corresponding changes are not a problem as long as they
are monotonic and do not produce any side-effects, such as adding an attribute to a class in a
traditional object-oriented model. All other cases require specific support by a modelling tool
to prevent inconsistencies. Since multi-level modelling introduces additional dependencies,
changes are clearly more challenging than in the traditional paradigm. Even adding a property
may create a problem. If, for example, an intrinsic attribute is added to a class, that may have
an effect not only to its direct instances, but also to instances of its instances. But even if a
regular property is added, this may require major changes (see example in Fig. 3.2). A complete
analysis of possible changes and approaches to handle them goes beyond the scope of this
report. Therefore, only a few selected requirements will be proposed here.

RT3 A modelling tool should support adding properties, both regular and intrinsic. This
includes accounting for possible side-effects.

Rationale: Adding properties is a regular operation during the development of a model.
Priority: high

30

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RT4 A modelling tool should support deleting properties, both regular and intrinsic. This
includes accounting for possible side-effects.

Rationale: Deleting properties is a regular operation during the development of a model.
Priority: high

RT5 A modelling tool should support the modification of properties, both regular and intrinsic.
Modifications relate to the name of a property as well as its specification. Again, possible
side-effects need to be accounted for, too.

Rationale: The modification of properties is a regular operation during the development of
a model. While it could be realized through deleting a property in the original class
and adding it in a new class, it is clearly more convenient to provide moving as a single
operation.

Priority: high

RT6 A modelling tool should support moving properties, both regular and intrinsic, from one
class within a hierarchy to another one.

Rationale: Moving properties from one class within a hierarchy to another one is an operation
that is required occasionally.

Priority: high

Note that new requirements such as contingent instantiation levels of properties (RC2, RC3),
multiplicities of attributes (RC18), or deferred instantiation of attribute classes (RC19) substan-
tially increase the complexity of changing properties.

RT7 A modelling tool should allow for changing an object’s classification level without com-
promising the integrity of a model.

Rationale: During the development of a model the classification hierarchy may have to be
modified. That includes deleting levels or inserting classes between existing levels.

Priority: high

Again, new requirements such as the demand for contingent level classes (RC1) add complexity
to this kind of change operations.

Challenge: Changes applied to multi-level models may have multiple effects that may not be
directly obvious. Some of these effects can be handled automatically by a tool, others require
user input. In any case, a modelling tool needs to cover all possible changes appropriately. That
requires a more specific requirements analysis and the thorough design and implementation of
operations that handle changes.

31

2 New Requirements

2.2.3 Model History

Sometimes it is important to know previous states or versions of a model or of model elements
respectively. At best, it would be possible to roll back to a previous state of a model. There are
different options to support a rollback to a previous version. All states of every model element
are stored together with a time stamp that defines the time of their creation. If, for example, an
attribute of a class is changed, a new version of the class would be created. Instead of storing
the entire model element, only those parts could be stored that were actually changed. In that
case, a new version of the attribute would be created, and the old one would be stored. In
addition, it is possible that any state change is recorded, or that only those states/versions are
stored that were explicitly marked as such.

RT8 The language should allow for adding meta data that is relevant for storing a model’s
history.

Rationale: This is the prerequisite for keeping track of previous model states.
Priority: high

RT9 A modelling tool should allow for explicitly defining model versions and support the
rollback to previous versions.

Rationale: The explicit definition of versions enables the modeller to define those states that
represent a relevant step in the evolution of a model. As a consequence, browsing through
the history of previous model states should be more clearly and more convenient.

Priority: high

Alternatively, it is conceivable that the state of a model is stored at a certain frequency, e.g.,
every 30 seconds. However, in any case, modelers should be provided with the option to
define a particular state as a version.

RT10 A modelling tool should support the rollback to previous versions.

Rationale: This is an important feature in case one wants to reconstruct the evolution of a model
or to continue with a previous version after it turned out that it is more appropriate than
the current version.

Priority: medium

RT11 Modelling tools should provide support for detecting the delta of two model versions.

Rationale: This feature helps to analyse the evolution of a model and to compare two versions
in particular.

Priority: medium

32

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

getFirstName() : String
getLastName() : String
yearsOfAge() : Integer
...()

firstName: String
lastName: String
dateOfBirth: String

Person

getEnrolled() : Date
getMatrNo() : String
 getFirstName() : String
 getLastName() : String
 yearsOfAge() : Integer

enrolled: Date
matrNo: String

Student

operations available through
delegation

faxColour() : Boolean
paperFeed() : Boolean
pagesPerMin() : Integer

faxColour: Boolean
paperFeed: Boolean
pagesPerMin: Integer
 serialNumber: String

FaxPrinter

 pagesPerMin() : Integer
getSerialNo() : String

 serialNumber: String

HP_F66

0

0

pagesPerMin: Integer

^PeripheralDevice^

^FaxPrinter^

serves representing values
characteristic for all instances
of instances

title: String
created: Date
size: Integer

Document

 title: String
 created: Date
 size: Integer
confidential: Boolean
storeUntil

BusinessReport

inherited property

Inheritance

Delegation

Delegation to Class

Figure 2.18: Illustration of How to Represent Inherited Properties

2.2.4 Information Filtering

Models can become complex. Therefore, a tool should allow for reducing the complexity
of their representation. A common approach to accomplish this is providing filters, which
allow to fade out and fade in information upon request. The current version of the Xmodeler
provides information filtering already, e.g., to hide or show class properties. The specific
features of the FMMLx demand for additional filters, which are addressed by the following
requirements. The rationale for all these requirements is basically the same, namely to allow
for adapting the complexity of a representation to users’ needs.

RT12 It should be possible to fade in/out intrinsic properties such as intrinsic attributes,
operations and associations.

Rationale:
Priority: medium

RT13 It should be possible to fade in/out inherited properties such as intrinsic attributes,
operations and associations. As a default, inherited properties are not shown. However,
it can be useful to present them. In that case, inherited properties should be marked as
such. See illustration of possible realization in Fig. 2.18.

Rationale:
Priority: medium

RT14 It should be possible to fade in/out operations that are available through delegation.
In case these operations are shown, they should be marked as such. See illustration of
possible realization in Fig. 2.19.

33

2 New Requirements

getFirstName() : String
getLastName() : String
yearsOfAge() : Integer
...()

firstName: String
lastName: String
dateOfBirth: String

Person

getEnrolled() : Date
getMatrNo() : String
 getFirstName() : String
 getLastName() : String
 yearsOfAge() : Integer

enrolled: Date
matrNo: String

Student

operations available through
delegation

faxColour() : Boolean
paperFeed() : Boolean
pagesPerMin() : Integer

faxColour: Boolean
paperFeed: Boolean
pagesPerMin: Integer
 serialNumber: String

FaxPrinter

 pagesPerMin() : Integer
getSerialNo() : String

 serialNumber: String

HP_F66

0

0

pagesPerMin: Integer

^PeripheralDevice^

^FaxPrinter^

serves representing values
characteristic for all instances
of instances

title: String
created: Date
size: Integer

Document

 title: String
 created: Date
 size: Integer
confidential: Boolean
storeUntil

BusinessReport

inherited property

Inheritance

Delegation

Delegation to Class
Figure 2.19: Illustration of How to Represent Operations Available Through Delegation

getFirstName() : String
getLastName() : String
yearsOfAge() : Integer
...()

firstName: String
lastName: String
dateOfBirth: String

Person

getEnrolled() : Date
getMatrNo() : String
 getFirstName() : String
 getLastName() : String
 yearsOfAge() : Integer

enrolled: Date
matrNo: String

Student

operations available through
delegation

faxColour() : Boolean
paperFeed() : Boolean
pagesPerMin() : Integer

faxColour: Boolean
paperFeed: Boolean
pagesPerMin: Integer
 serialNumber: String

FaxPrinter

 pagesPerMin() : Integer
getSerialNo() : String

 serialNumber: String

HP_F66

0

0

pagesPerMin: Integer

^PeripheralDevice^

^FaxPrinter^

serves representing values
characteristic for all instances
of instances

title: String
created: Date
size: Integer

Document

 title: String
 created: Date
 size: Integer
confidential: Boolean
storeUntil

BusinessReport

inherited property

Inheritance

Delegation

Delegation to Class

Figure 2.20: Illustration of How to Represent Operations Available Through Delegation to Class

Rationale:
Priority: medium

RT15 It should be possible to fade in/out operations that are available through delegation to
class. If these operations are shown, they should be marked as such. See illustration of
possible realization in Fig. 2.20.

Rationale:
Priority: medium

In general, a tool should allow for the definition of representation preferences in a user profile.
However, it should be possible to modify visibility when working with a model.

34

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

2.2.5 Compensation for Lack of Static Typing

The FMMLx is an executable language. This is because it is an instance of Xcore and embedded
in the Xmodeler. The flexibility of this integrated meta-modelling and meta-programming
environment results in part from the choice of dynamic typing. It does not only facilitate a
powerful implementation of delegation, but supports versatile introspection, too. While the
use of the FMMLx benefits from dynamic typing, the lack of static typing has its downside, too,
because it reduces the information content of code. The following example queries illustrate
this shortcoming.

Search for a l l c l a s s e s , the i n s t a n c e s of which send the message m1
to o b j e c t s of the c l a s s c .

The analysis of code allows identifying all operations and, hence, all classes, that implement
sending a message by the signature of m1. However, the code does not allow to unambiguously
determine whether the message is sent to an instance of class c.

Search for a l l c l a s s e s , the o b j e c t s of which r e c e i v e messages from
o b j e c t s of the c l a s s c .

This is an extended version of the previous query, since it requires collecting all messages sent
by objects of the class c.

RT16 A modelling tool that features dynamic typing should compensate for the lack of static
typing. This could be achieved by adding information to code.

Rationale: If the representation of code is ambiguous, the analysis of large models can be
painful and produce serious threats to system integrity.

Priority: medium

2.2.6 Model Completion

Since the FMMLx is executable, the specification and implementation of operations is of
significant relevance. The creation of a model includes various routine tasks. This is the case,
too, for mapping a model to code. A typical example of routine tasks is the creation of access
operations.

That includes the definition of operation interfaces according to conventions (see examples
in Figures 2.21, 2.22, 2.23, and 2.24), the creation of code and the realization of links to the
elements that are subject of an access operation (see Fig. 2.23)

35

2 New Requirements

<getter> <attribute name> ‘():’ <attribute class/type name> ‘()’

<getter> := ‘get’

 Example: getFirstName(): String

<setter> <attribute name> ‘(‘ <paramName> ‘:’ <name of attribute class> ‘)’

<setter> := ‘set’

 Example: setFirstName (n: String)

<getter> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<getter> := ‘get’

 Example: getDepartment(): Department

<setter> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<setter> := ‘set’

 Example: setDepartment (d: Department)

<remover> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromDepartments(): Department

<adder> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<adder> := ‘addTo’

 Example: addToDepartments (d: Department)

<remover> <attribute name> ‘():’ < name of attribute class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromColors(): Color

<adder> <attribute name> ‘(‘ <paramName> ‘:’ < name of attribute class> ‘)’

<adder> := ‘addTo’

 Example: addToColors (c: Color)

Figure 2.21: Construction of Access Operations for Attributes with Multiplicity 1..1

<getter> <attribute name> ‘():’ <attribute class/type name> ‘()’

<getter> := ‘get’

 Example: getFirstName(): String

<setter> <attribute name> ‘(‘ <varName> ‘:’ <attribute class/type name> ‘)’

<setter> := ‘set’

 Example: setFirstName (n: String)

<getter> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<getter> := ‘get’

 Example: getDepartment(): Department

<setter> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<setter> := ‘set’

 Example: setDepartment (d: Department)

<remover> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromDepartments(): Department

<adder> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<adder> := ‘addTo’

 Example: addToDepartments (d: Department)

<remover> <attribute name> ‘():’ < name of attribute class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromColors(): Color

<adder> <attribute name> ‘(‘ <paramName> ‘:’ < name of attribute class> ‘)’

<adder> := ‘addTo’

 Example: addToColors (c: Color)

Figure 2.22: Construction of Access Operations for Attributes with Max. Cardinality > 1

<getter> <attribute name> ‘():’ <attribute class/type name> ‘()’

<getter> := ‘get’

 Example: getFirstName(): String

<setter> <attribute name> ‘(‘ <varName> ‘:’ <attribute class/type name> ‘)’

<setter> := ‘set’

 Example: setFirstName (n: String)

<getter> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<getter> := ‘get’

 Example: getDepartment(): Department

<setter> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<setter> := ‘set’

 Example: setDepartment (d: Department)

<remover> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromDepartments(): Department

<adder> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<adder> := ‘addTo’

 Example: addToDepartments (d: Department)

<remover> <attribute name> ‘():’ < name of attribute class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromColors(): Color

<adder> <attribute name> ‘(‘ <paramName> ‘:’ < name of attribute class> ‘)’

<adder> := ‘addTo’

 Example: addToColors (c: Color)

Figure 2.23: Construction of Access Operations for linked Objects with Multiplicity 1..1

36

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

<getter> <attribute name> ‘():’ <attribute class/type name> ‘()’

<getter> := ‘get’

 Example: getFirstName(): String

<setter> <attribute name> ‘(‘ <varName> ‘:’ <attribute class/type name> ‘)’

<setter> := ‘set’

 Example: setFirstName (n: String)

<getter> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<getter> := ‘get’

 Example: getDepartment(): Department

<setter> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<setter> := ‘set’

 Example: setDepartment (d: Department)

<remover> <name of pointer variable> ‘():’ < name of associated class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromDepartments(): Department

<adder> <name of pointer variable> ‘(‘ <paramName> ‘:’ < name of associated class> ‘)’

<adder> := ‘addTo’

 Example: addToDepartments (d: Department)

<remover> <attribute name> ‘():’ < name of attribute class> ‘()’

<remover> := ‘removeFrom’

 Example: removeFromColors(): Color

<adder> <attribute name> ‘(‘ <paramName> ‘:’ < name of attribute class> ‘)’

<adder> := ‘addTo’

 Example: addToColors (c: Color)

Figure 2.24: Construction of Access Operations for linked Objects with Max. Cardinality > 1

RT17 A modelling tool should support the generation of access methods according to adapt-
able policies.

Rationale: Generating access operations decreases development costs and contributes to com-
prehensibility and integrity of models and software.

Priority: high

2.2.7 User Management

Often, models will be developed an used by more than one person. Therefore, a modelling tool
should support some kind of user management. That includes the creation and management
of profiles and assigning modifications of models to users.

RT18 A modelling tool should support the creation of user profiles. A user profile stores user’s
visualization preferences, which include font sizes, colour, the layout of window frames,
etc.

Rationale: Adapting the representation of a model to individual preferences allows creating a
more convenient and possibly more efficient environment. It is an unnecessary burden
for users, if they have to specify their preferences each time they use a model (or an
instance of the tool) that is used by others, too.

Priority: medium

RT19 With respect to keeping track of the evolution of a model, a tool should also store the
users that were responsible for a certain modification.

Rationale: Sometimes, it is useful to find out who made certain modelling decisions, especially,
if they seem unclear or inappropriate.

Priority: medium

37

2 New Requirements

Further aspects of user management could address the definition of access rights. Access rights
could be defined for an entire model, for certain aspects of a model, or for certain operations
on models. Currently, we do not intend to support multi-user editing of models. Therefore,
these aspects of user management are of low priority only.

2.3 Concrete Syntax

The traditional distinction between general-purpose modelling language (GPML) and domain-
specific modelling language (DSML) cannot be directly applied to the FMMLx . On the one
hand, the FMMLx is a meta modelling language, since is supposed to be used for the spec-
ification of any kind of language. That would qualify it as a GPML or, more precisely, as a
general purpose meta-modelling language. Only the languages that are specified with the
FMMLx would then be domain-specific. On the other hand, however, the FMMLx does not
have to be restricted to a meta-modelling language. Instead, it can be used to create multi-level
models that also include domain-specific concepts – usually on lower levels of classification.
As a consequence, it is conceivable to use different notations with the FMMLx . On more
generic, that is, higher levels of classification, one could use a notation that lacks any reference
to specific domain concepts. On lower levels, notations could be used that refer to common
visualizations of domain-specific concepts. However, even though the lower levels could be
modelled with the FMMLx , it is more appropriate to leave them to domain-specific languages,
which in turn would be specified with the FMMLx . Therefore, the notation of the FMMLx is
generic, that is, it does not account for a specific visualization of domain-specific concepts.

It is challenging to develop requirements for the (generic) concrete syntax of a multi-level
modelling language. This is for two main reasons. First, by their very nature, the concepts of
such a language are not only rather abstract, but they also go beyond concepts of traditional
object-oriented modelling. Second, the preferences for certain visualizations are not inde-
pendent of previous experiences. The group of researchers that is familiar with the previous
version of the FMMLx , and that has been involved in its development, is probably biased,
both with respect to the concepts it offers and its notation. Researchers that were involved
in the development of other languages for multi-level modelling are likely to be biased, too.
Therefore, the following requirements will reflect subjective preferences. The only way to relax
the effect of subjective preferences is to aim at comprehensible justifications of requirements,
e.g., by refering to more general principles.

RN1 The notation should be in line with widespread notations of conceptual modelling
languages. That recommends to use shapes for the representation of classes similar to
those used with the UML. This is especially the case for the representation of classes on
M1, because they are typically subject of traditional object models.

38

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Rationale: The use of familiar representations is likely to promote the understandability of
multi-level models.

Priority: high

RN2 The notation should build on that of the previous version of the FMMLx and account for
critical feedback on the previous notation at the same time.

Rationale: The previous notation resulted from a long process of developing, using, and
improving multi-level modelling languages. Therefore, it seems reasonable to assume
that it is regarded as widely appropriate by those who used it. At the same time, certain
aspects of the notation were subject of critical comments that should be accounted for.

Priority: medium

RN3 The additional concepts defined with the new version of the FMMLx , e.g., contingent-
level classes, should be represented clearly.

Rationale: This requirement is a direct consequence of the general demand for understandabil-
ity of models.

Priority: high

RN4 The representation of classification levels should follow certain design guidelines.

Rationale: In the previous version, the colours used for distinguishing classification levels were
chosen in a widely arbitrary manner, which made it difficult to memorize what level a
specific colour represented.

Priority: medium

A possible approach to satisfy this requirement could be to use colours according to their
position in the colour spectrum. In addition, it would be helpful, if the corresponding grey-
scale representations were characterized by a step-wise increasing lightness. With respect to
requirement RN4 and the long-standing use of black as background colour of classes on M1,
the application of the colour spectrum would start on M2 only. Note that this requirement
would, in part, be in conflict with requirement RN4.

39

3 Terminology

3 Terminology

It is the purpose of a technical terminology to promote effective and efficient communication.
Therefore, the concepts it provides should adequately narrow the range of possible interpre-
tations and allow for expressing relevant differences. Multi-level modelling can be seen as
new paradigm, both for conceptual modelling and for software development in general. It
changes the traditional approach to object-oriented modelling in a way that requires modellers
to rethink the way how they perceive and conceptualize a domain, and what they learned
about modelling languages. The most important sign of a new paradigm is the fact that the
terminology of a previous paradigm is not sufficient and/or misleading. Based on an analysis
of these terminological challenges, I will propose a new terminology that is suited to cope with
the peculiarities of multi-level modelling.

3.1 Misleading Application of Current Terminology

The concepts class and object are at the core of the object-oriented paradigm. It makes sense
to use them for multi-level modelling, too, because they serve a similar purpose. However,
they have to be extended. First, in multi-level models, every class is an object at the same
time. Second, the classification level of classes is not limited. The conceptualization of classes
in multi-level systems is, however, different, because they allow for properties that are not
defined for direct instances only. This feature has a substantial impact on two terms that are
also essential for the traditional paradigm, classification and instantiation. In the traditional
paradigm, a class can be conceptually regarded as an abstraction that specifies the extension of
all objects of the same kind. The types of its properties, that is, of its attributes and the classes it
is associated to, define this extension. Hence, instantiation means to select an element out of this
set. As a consequence, the instances of a class cannot be further instantiated. This is different
for classes in multi-level systems. Since a class may have intrinsic properties, the extension of
its direct instances is not defined by the carthesian product of the sets specified with the types
of its attributes or associated classes. Instead, intrinsic properties are inherited to its instances,
apart from those that are to be instantiated on the level below. Not only that instantiation in
multi-level systems can be different from instantiation in traditional object-oriented systems, it
also seems to violate an iron law of the traditional paradigm, that is, the strict dichotomy of
instantiation and specialization. On closer inspection, multi-level modelling does not allow for

40

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

CityBike

1
1
0

^Bicycle^

range: Integer
 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ElectricCityBike

1
1

^CityBike^

0

gps: Boolean
 weight: Float
 salesPrice: Float

CityTourer

1
1

^CityBike^

serialNo: String

UrbanZ-20

gps =
weight =
salesPrice =

#true

14.0
920.0

^CityTourer^

gps: Boolean
weight: Float
salesPrice: Float

CityTourer

^CityBike^

allTerrain: Boolean
race: Boolean
 material: Material
 color: Color
 height: Float
 weight: Float
 serialNo: String

Frame

1

^Part^

 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

RacingFrame

1

^Frame^

1
1
0

allTerrain =
race =

false
true

1

0

1

2

2

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

CityBike

1
1
0

^Bicycle^

range: Integer
 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ElectricCityBike

1
1

^CityBike^

0

a) b)

equivalent

instead

Figure 3.1: Examples of Instantiation with Intrinsic Attributes

applying instantiation and specialization simultaneously, at least as long as specialization is
regarded to satisfy the substituability constraint (Liskov and Wing 1994). Instead, it allows
for combining instantiation and inheritance. Inheriting properties is a prerequisite of deep
instantiation.

Since classification and instantiation in multi-level modelling are not equivalent to the corre-
sponding terms in the traditional paradigm, it is misleading to apply these terms to multi-level
modelling without differentiation. Example a) in Fig. 3.1 shows the instantiation of a class in a
multi-level system. The class Frame is located on M3. Its regular attributes are instantiated and
initialized within the instance RacingFrame on M2, while the intrinsic attributes are inherited
to RacingFrame. Example b) shows a similar constellation. However, all intrinsic attributes
are to be instantiated with the direct instances of the class CityTourer. Therefore, the class
could equivalently be specified without intrinsic attributes. Nevertheless, it is different from
an instantiation in the traditional paradigm, because an attribute is added to the instance.

The example in Fig. 3.2 illustrates a specific challenge related to classification and instantiation
in multi-level systems. The instantiation of the class CityBike on M3 should not qualify as an
instantiation in a multi-level system, because not a single attribute is instantiated with would-
be instances such as ElectricCityBike. Therefore, ElectricCityBike should rather be
specialized from CityBike, which recommends assigning them to the same classification

41

3 Terminology

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

CityBike

1
1
0

^Bicycle^

range: Integer
 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ElectricCityBike

1
1

^CityBike^

0

gps: Boolean
 weight: Float
 salesPrice: Float

CityTourer

1
1

^CityBike^

serialNo: String

UrbanZ-20

gps =
weight =
salesPrice =

#true

14.0
920.0

^CityTourer^

gps: Boolean
weight: Float
salesPrice: Float

CityTourer

^CityBike^

allTerrain: Boolean
race: Boolean
 material: Material
 color: Color
 height: Float
 weight: Float
 serialNo: String

Frame

1

^Part^

 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

RacingFrame

1

^Frame^

1
1

0

allTerrain =
race =

false
true

1

0

1

2

2

 weight: Float
 salesPrice: Float
 partSalesPrice: Float

CityBike

1
1
0

^Bicycle^

range: Integer
 weight: Float
 salesPrice: Float
 partSalesPrice: Float

ElectricCityBike

1
1

^CityBike^

0

a) b)

equivalent

instead

Figure 3.2: Instantiation Replaced by Inheritance

level, which is M2 in the example. However, the specification of a class may change over
time. If CityBike is extended later by a regular attribute such as integratedLock, which
should be instantiated on M2, specialization would not be adequate any longer. Therefore,
this example underlines the need for a tool to support extensive, and challenging, change
operations.

To avoid confusion, a terminology for multi-level modelling requires specific concepts of class,
object as well as of instantiation and classification. As a consequence, the notion of classification
level needs to be adapted to the peculiarities of multi-level modelling, too. Furthermore, the
semantics of inheritance needs to be adapted, since inheritance relationships can be defined
between classes on different levels of classification.

3.2 Limitations of Current Terminology

The concepts used in the traditional paradigm are not sufficient to directly represent ideas
of multi-level models. A major reason for this restriction is the fact that instantiation and
classification may evolve over multiple levels without being transitive. This is different from
generalization/specialization hierarchies. If we, for example, want to denominate the set of
classes that are part of the entire specialization hierarchy below the class c, we could use an
expression like “all subclasses of c”, since every class in the hierarchy, no matter on what level,
would qualify as a subclass of c.

The existing terminology would not allow to directly express sets of objects that were in-
stantiated across multiple levels. It is even extremely cumbersome to describe such as set

42

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

A

A

^C^

A_1

^A^

A_2

^A^

A_n

^A^

A_1_1

^A_1^

A_1_m

^A_1^

A_1_1_1

^A_1_1^

A_1_1_k

^A_1_1^

Figure 3.3: Illustration of Relaxed and Restricted Concept of Instantiation

appropriately. Take, for example, the hierarchy in Fig. 3.3. The hierarchy classes below the class
A are all instances of A plus all instances of all instances of A plus all instances of all instances
of all instances of A. Obviously, the complexity of expressions like these is a serious obstacle to
communication.

A further, less demanding problem related to the terms class and object. Every class is an
object, but not every object qualifies as class. In the traditional paradigm, objects that are not
classes at the same time, can usually be referred to as objects, because classes are not regarded
as objects, or as instances. Both options do not work for multi-level systems. However, it is
cumbersome to use an expression like “objects that cannot be instantiated”. At the same time,
it would be ambiguous, to, because it holds for abstract classes, too.

Other terminological issues relate to the ambiguity of “meta”. In the old paradigm it usually
serves to name classes on M2. In multi-level modelling, every class above M1 may qualify as a
meta-class. Therefore, the term is unambiguous only in relation to a particular level.

3.3 Proposal for Specialized Terminology

The description of the proposed terminology is not intended to be comprehensive, because
concepts that are known from the traditional paradigm are not defined anymore.

Class: A class is an object. It may have superclasses. If a language allows for multiple inheri-
tance, it may have many superclasses. Otherwise, it must not have more than one superclass.

43

3 Terminology

Note that the restriction to one superclass may be relaxed, if the language architecture makes
use of a core (meta-) class that serves as a transparent superclass for all classes in a model.
A class is defined through properties. A property is either an attribute, an association, or an
operation.

Intrinsic Property: An intrinsic property is specified by an instantiation level that defines the
level where it is to be instantiated. The intended instantiation level has to be lower than 𝑙 − 1,
where l is the level of the class where the intrinsic property is first defined.

Inherited from Root Class: This term refers to RC10. Such a property is implicitly inherited from
a root or core class that serves as a superclass of all classes in a multi-level system. For example,
an attribute name is usually needed in every class. A further example would be an operation
like allInstances().

Object: Every object is of exactly one class. It has a state. The state of an object is defined by
its properties (in case, the object is a class), the objects or values instantiated from the classes
or types of its attributes, and references to external objects, which are instances of classes, the
object’s class may be associated with. Usually, but not necessarily, objects enforce encapsulation.
From a conceptual perspective, that means that objects and values that where instantiated from
attribute classes or types, do not have an identity independent of the object.

Intrinsic Instantiation: To avoid misinterpretation, the term “intrinsic instantiation” can be used
instead of “instantiation”. It represents the creation of an instance from a class, which, in
addition to the instantiation of properties, may also include inherited intrinsic properties. A
more precise definition of intrinsic instantiation is subject of the language specification. In
particular, it needs to be decided whether it should be possible to add properties to an instance
(if the instance is a class). The examples in Fig. 3.4 illustrate these options. The intrinsic
instantiation a) is restricted to properties specified in the (meta) class. In the instance, the
property types are instantiated or, in case of intrinsic properties, inherited from the (meta)
class. With example b), the instantiated class adds a further property. While that clearly
adds flexibility, it is doubtful whether it should be allowed for. It is an essential aspect of
classification that a class defines the extension of its instances. That would be still the case with
option a). In case of option b), however, an indefinite number of properties could be added.
Hence, the class would no longer specify the extension of its instances. Example c) shows how
the intended class in b) could be specified by specializing the instance in a).

Intrinsic Classification: The term “intrinsic classification” can be used instead of “classification”.
It represents the creation of a class that represents a set of objects that are of the same kind. In
addition to abstracting possible object states to class properties, intrinsic classification may also
comprise the generalisation of object properties (in case the object is a class).

44

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

allTerrain: Boolean
race: Boolean
 material: Material
 color: Color
 height: Float
 weight: Float
 serialNo: String

Frame

1

^Part^

 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

RacingFrame

1

^Frame^

1
1
0

allTerrain =
race =

false
true

1

0

1

2

2

allTerrain: Boolean
race: Boolean
 material: Material
 color: Color
 height: Float
 weight: Float
 serialNo: String

Frame

1

^Part^

certified: Boolean
 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

RacingFrame

1

^Frame^

1
1
0

allTerrain =
race =

false
true

1

0

1

2

2

a) b) c)

certified: Boolean
 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

CertRacingFrame

1

^Frame^

allTerrain =
race =

false
true

1

0

1
2

 color: Color
 height: Float
 weight: Float
 material: Material
 serialNo: String

RacingFrame

1

^Frame^

allTerrain =
race =

false
true

1

0

1
2

Figure 3.4: Illustration of Flavours of Intrinsic Instantiation

Level: The level of an object serves to define how many times it can be (intrinsicly) instantiated.
To avoid misinterpretation, the levels should not be indicated with an “M” as in the traditional
paradigm, but with “ML” instead. Furthermore, the integer that indicates the level should be
print in subscript to improve readability.

Specialization: A class can be specialized into more specific classes, which means that it inherits
all its properties to its subclasses. Its state is not inherited. Specialization is restricted to classes
on the same level. Note that this restriction does not apply to inheriting properties from a root
class.

Generalization: Classes can be generalized to superclasses. In case of single generalization a
class must not have more than one superclass. If a language (such as the FMMLx) allows
for multiple generalization, it may have multiple superclasses. Generalization is the inverse
operation to specialization.

Basic Object: An object that is located on level ML0 can be referred to as “basic object”. It must
not have properties and cannot be instantiated.

Abstract Class: An abstract class can exist on every level above ML0. It must not be instantiated.
Its sole purpose is to allow for a generalization over similar classes.

45

3 Terminology

Contingent Level Class: A contingent level class does not have a definite level. Its class must
be contingent, too. It can be intrinsicly instantiated to contingent classes or to regular objects
on every level. It depends on the chosen notion of intrinsic instantiation whether the level
of objects a contingent class can be instantiated to depends on its properties. If intrinsic
instantiation of a class is restricted to inheritance of intrinsic properties and the instantiation
of objects or values from properties of that class, the highest level of an object an contingent
level class can be instantiated to, would be determined by the highest instantiation level of its
intrinsic properties. If that option is chosen, contingent level classes must include contingent
level properties. Otherwise, their level would not be contingent, but determined by their
properties.

Contingent Level Property: A contingent level property does not have a unique instantiation
level. Its instantiation level can be any level p with 𝑝 < 𝑙 − 1, where l is the level of the class
that defines the property.

Meta Class on Level: The term “meta class of c on level n” is used to refer to the class on MLn in
the hierarchy of meta classes of a class c. The direct class of c would be referred to as “class of
c”.

Hierarchy of Classes: The term “hierarchy of classes of c” is used to refer to the list of (meta-)
classes of c.

Instance Tree: All instances and indirect instances of a class c are referred to as “instance tree of
c”. All direct instances are called “all instances” or “all intrinsic instances”.

46

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

4 Conclusions

The design of any complex artefact demands for a thorough analysis of requirements. In case
of a modelling language requirements are harder to identify than for application systems. This
is even more so for a multi-level modelling language, because it is part of a new paradigm. Not
only that few users are aware of this new paradigm. In addition, the ideas of how to evolve it
are still not consolidated. Against this background, the analysis of requirements for multi-level
modelling languages is a remarkable challenge. Clearly more than with any other requirements
analysis, it cannot be expected to be complete. Furthermore, it may turn out that some of the
presuppositions that motivated requirements need to be revised. However, at the same time,
this situation creates also an opportunity. To further promote the research field of multi-level
modelling, it is important to consolidate and eventually unify foundational concepts. The
requirements presented in this report are also an attempt to contribute to a discourse on the
future of multi-level modelling. It seems more promising to start the competition not only with
the presentation of language specifications, but during requirements analysis already. First, the
more researchers are involved in the analysis of requirements, the more likely it is to identify
relevant issues. Second, from a psychological perspective, it seems to be easier to develop a
consensus on requirements than on the comparative evaluation of existing artefacts, at least as
long as the creators of these artefacts are involved.

47

Bibliography

Bibliography

Atkinson, Colin and Ralph Gerbig (2016). “Flexible Deep Modeling with Melanee”. In: Model-
lierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband. Ed. by Stefanie Betz Ulrich Reimer.
Vol. 255. Modellierung 2016. Bonn: Gesellschaft für Informatik, pp. 117–122. ISBN: 978-3-
88579-649-7.

Atkinson, Colin, Bastian Kennel, and Bjoern Goss (2011). “The Level-Agnostic Modeling
Language”. In: Software Language Engineering. Ed. by Brian Malloy, Steffen Staab, and Mark
van den Brand. Vol. 6563. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 266–275. ISBN: 978-3-642-19439-9.

Atkinson, Colin and Thomas Kühne (2001). “The Essense of Multilevel Metamodeling”. In:
UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts, and Tools. Ed. by
Martin Gorgolla and Cris Kobryn. Vol. 2185. Lecture Notes in Computer Science. Berlin
and London, New York: Springer, pp. 19–33. ISBN: 978-3-540-42667-7.

Atkinson, Colin and Thomas Kühne (2008). “Reducing accidental complexity in domain
models”. In: Software & Systems Modeling 7.3, pp. 345–359. ISSN: 1619-1366. DOI: 10.
1007/s10270-007-0061-0. URL: http://homepages.ecs.vuw.ac.nz/˜tk/
publications/papers/accidental-springer-online.pdf.

Brooks, Frederick P. (1995). The Mythical Man Month: Essays on Software Engineering. 2nd ed.
Reading, MA: Addison-Wesley. ISBN: 978-0-201-83595-3.

Clark, Tony, Paul Sammut, and James Willans (2008). Applied metamodelling: a foundation for
language driven development. URL: https://eprints.mdx.ac.uk/6060/1/Clark-
Applied_Metamodelling_%28Second_Edition%29%5B1%5D.pdf.

Clark, Tony and James Willans (2012). “Software Language Engineering with XMF and XMod-
eler”. In: Formal and Practical Aspects of Domain-Specific Languages: Recent Developments.
Ed. by Marjan Mernik. IGI Global, pp. 311–340.

Frank, Ulrich (2014). “Multilevel Modeling: Toward a New Paradigm of Conceptual Modeling
and Information Systems Design”. In: Business and Information Systems Engineering 6.6,
pp. 319–337.

48

https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
http://homepages.ecs.vuw.ac.nz/~tk/publications/papers/accidental-springer-online.pdf
http://homepages.ecs.vuw.ac.nz/~tk/publications/papers/accidental-springer-online.pdf
https://eprints.mdx.ac.uk/6060/1/Clark-Applied_Metamodelling_%28Second_Edition%29%5B1%5D.pdf
https://eprints.mdx.ac.uk/6060/1/Clark-Applied_Metamodelling_%28Second_Edition%29%5B1%5D.pdf

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

Frank, Ulrich (2016). “Designing Models and Systems to Support IT Management: A Case
for Multilevel Modeling”. In: MULTI 2016 – Multi-Level Modelling. Proceedings of the Work-
shop in Saint-Malo, pp. 3–24. URL: http://www.wi-inf.uni-due.de/FGFrank/
documents/Konferenzbeitraege/ML-ITML-Multi2016.pdf.

Jeusfeld, Manfred A. (2009). “Metamodeling and method engineering with ConceptBase”.
In: Metamodeling for Method Engineering. Ed. by Manfred A. Jeusfeld, Matthias Jarke, and
John Mylopoulos. Cambridge: MIT Press, pp. 89–168. ISBN: 978-0262101080.

Kaczmarek-Heß, Monika (2017). “Multilevel Model of Events in Support of Enterprise Agility
in the Realm of Enterprise Modeling”. In: Proceedings of the CBI 2017, pp. 267–276.

Kaczmarek-Heß, Monika and Michael Heß (2018). “A Multilevel Model of Pharmaceuticals”.
In: Multikonferenz Wirtschaftsinformatik 2018 (MKWI 2018), pp. 1516–1527.

Kaczmarek-Heß, Monika and Sybren De Kinderen (2017). “A Multilevel Model of IT Platforms
for the Needs of Enterprise IT Landscape Analyses”. In: Business & Information Systems
Engineering 59.9, pp. 315–329. URL: https://link.springer.com/article/10.
1007/s12599-017-0482-4.

Kühne, Thomas and Daniel Schreiber (2007). “Can programming be liberated from the two-
level style: multi-level programming with deepjava”. In: Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented programming systems and applications (OOPSLA
’07). Ed. by Richard P. Gabriel et al. Vol. 42,10. ACM SIGPLAN notices. New York: ACM
Press, pp. 229–244. ISBN: 978-1-59593-786-5. URL: http://atlas.tk.informatik.tu-
darmstadt.de/Publications/2007/p229-kuehne.pdf.

Lara, Juan de and Esther Guerra (2010). “Deep Meta-modelling with MetaDepth”. In: Objects,
Models, Components, Patterns, 48th International Conference, TOOLS 2010, Málaga, Spain, June
28 - July 2, 2010. Proceedings. Ed. by Jan Vitek. Vol. 6141. Lecture Notes in Computer Science.
Springer, pp. 1–20. ISBN: 978-3-642-13952-9. DOI: 10.1007/978-3-642-13953-6_1.

Liskov, Barbara H. and Jeannette M. Wing (1994). “A Behavioral Notion of Subtyping”. In:
ACM Transactions on Programming Languages and Systems 16, pp. 1811–1841.

Meta Object Facility (MOF) Core Specification: Version 2.0 (2006). URL: http://www.omg.org/
spec/MOF/2.0/.

OMG (2010). OMG Unified Modeling Language (OMG UML), Infrastructure: Version 2.3. URL:
http://www.omg.org/spec/UML/2.3/Infrastructure.

49

http://www.wi-inf.uni-due.de/FGFrank/documents/Konferenzbeitraege/ML-ITML-Multi2016.pdf
http://www.wi-inf.uni-due.de/FGFrank/documents/Konferenzbeitraege/ML-ITML-Multi2016.pdf
https://link.springer.com/article/10.1007/s12599-017-0482-4
https://link.springer.com/article/10.1007/s12599-017-0482-4
http://atlas.tk.informatik.tu-darmstadt.de/Publications/2007/p229-kuehne.pdf
http://atlas.tk.informatik.tu-darmstadt.de/Publications/2007/p229-kuehne.pdf
https://doi.org/10.1007/978-3-642-13953-6_1
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/UML/2.3/Infrastructure

Bibliography

Szyperski, Clemens, Dominik Gruntz, and Stephan Murer (2011). Component software: Beyond
object-oriented programming. 2nd ed. Addison-Wesley Component software series. London:
Addison-Wesley. ISBN: 9780321753021.

Volz, Bernhard Walter (2011). Werkzeugunterstützung für methodenneutrale Metamodellierung.
Bayreuth.

50

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

A Appendix: List of Requirements

RC1
In addition to having classes with a definite level, it should be possible to define
classes with a contingent level. A contingent level allows for adapting the concrete
level of a class to different contexts of use.

Rationale: It happens that two classes on different classification levels could
be classified by the same meta-class. However, this can be achieved only, if the
meta-class does not have a definite classification level. Instead, its level would have
to be contingent with respect to the instantiation context.

Priority: high

RC2
It should be possible to define intrinsic attributes with a contingent instantiation level.

Rationale: It may not be possible to foresee the concrete instantiation level of
an intrinsic attribute, while knowing that it has to be instantiated somewhere down
the instantiation line.

Priority: medium

RC3
It should be possible to define intrinsic associations and operations with a contingent
instantiation level.

Rationale: As with intrinsic attributes, it may not be possible to foresee the
concrete instantiation level.

Priority: medium

51

RC4
It should be possible to define constraints on the intended instantiation level. These
could address a minimum or maximum number of instantiation steps, or a set of
alternative instantiation levels, e.g., level 1 or level 2.

Rationale: It is conceivable that at the time of specifying a class on level n,
there is not sufficient knowledge available to exactly define an intended instantiation
level. But usually at least some restrictions on possible instantiation levels will be
known. Hence, the requirements follows from the principle that all knowledge
available on a certain level should be specified there.

Priority: medium

RC5
It should be possible to define preliminary classes without a meta-class.

Rationale: Sometimes, a bottom-up approach seems to be more appropriate
than a top-down approach.

Priority: high

RC6
Intrinsic associations should allow the specification of different instantiation levels
for both participating classes.

Rationale: It is common in natural language to link two concepts (or object
references) on different classification levels in one sentence. Accordingly, it can be
a relevant requirement to link two objects on different classification levels in an
multi-level model. If the association can be defined on a higher level already, that is,
if the association is intrinsic, it follows directly that it must be possible to support
different instantiation levels.

Priority: high

52

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RC7
The definition of intrinsic associations should imply that corresponding constraints
are refined with every instantiation step.

Rationale: By their very nature, intrinsic associations lack certain knowledge
about the actual association at the level where they are defined for. At the same
time, with every instantiation step, the range of possible options decreases. Hence,
refining corresponding constraints dynamically would be an important contribution
to system integrity.

Priority: high

RC8
The language specification should allow for defining intrinsic associations without
specific multiplicities. In other words, it should be possible to defer the specification
of multiplicities to a lower level.

Rationale: In cases where the multiplicities of an intrinsic association at the
intended association level may vary, the definition of a particular multiplicity would
create ambiguity or even a contradiction, hence, a serious threat to a system’s integrity.

Priority: high

RC9
If absolute minimum or maximum cardinalities are known, they should serve as
constraints for the final definition of multiplicities on the intended instantiation
level. That means that the actual cardinalities specified on the intended instantiation
level have to be within this range. As a consequence, it needs to be possible to mark
cardinalities as boundary values.

Rationale: It should be possible to specify all knowledge about multiplicities
of associations that is available.

Priority: high

53

RC10
It should be possible to indicate that certain properties of a class are to be inherited to
its instances.

Rationale: Inheriting features where it is appropriate enables preventing re-
dundancy.
Note that inheriting properties is different from intrinsic properties. An intrinsic
property is not directly instantiated where it is defined, but only at the specified
instantiation level. An inherited property can be part of many classes. Therefore, it
can be instantiated multiple times. In an ideal case, the implementation of operations
can be inherited, too (as it would be the case with the example in Fig. 2.8).

Priority: high

RC11
Intrinsic properties must not be explicitly inherited, since they are passed to instances
anyway until the intended instantiation level is reached.

Rationale: Explicit inheritance of intrinsic properties would be redundant and
would therefore compromise the comprehensibility of a model.

Priority: high

RC12
The language should be extended with auxiliary classes that represent specific con-
cepts that are often needed. They include various units of measurement, currencies,
multiplicities, and, more specific, economic concepts such as price.

Rationale: The availability of thoroughly defined auxiliary classes contributes
to model integrity and modelling productivity.

Priority: high

54

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RC13
The definition of specific auxiliary classes should be supported. That includes the
definition of classes which represent enumerations or ranges of elements of a certain
type/class.

Rationale: This is an incentive for software developers to define specific auxil-
iary classes and, thus, to improve model and system integrity.

Priority: high

RC14
The specification of an association should allow for defining whether the association
is bi-directional or uni-directional.

Rationale: Even though this information is required for implementation only,
it should be possible to add it to a conceptual model to prepare for a smooth
transition to design and implementation. This is even more the case for an executable
modelling language like the FMMLx , since there is no clear borderline between
models and code anymore.

Priority: high

RC15
Delegation should be enabled between classes on any classification level as a specific
association between two classes on any level.

Rationale: In object-oriented system, delegation is an important abstraction
that allows to compensate for misconceptions of inheritance.
Note that further, more specific, requirements would be needed for a comprehensive
specification of delegation. An elaborate analysis of delegation is subject of a
further publication that is currently under review. Apart from that, a preliminary
implementation of delegation exists already in the current version of the language
implementation.

Priority: high

55

RC16
The language should provide generic association types. At best, these types would
be instantiated from an association meta-type.

Rationale: Including generic association types promotes modelling productiv-
ity and model integrity. Meta-association types provide modellers with more
flexibility, since they allow to vary the semantics of generic association types.

Priority: medium

RC17
It should be possible to define domain-specific association types. In order to cover
the variance of domain-specific association types, it could be helpful, if a language
provides meta-association types on a higher level, that would allow the instantiation
of meta-association types.

Rationale: The specification of domain-specific association types promotes model
integrity.

Priority: medium

RC18
It should be possible to specify multiplicities of attributes.

Rationale: Without this feature, it is hardly possible to adequately model cases where
attributes are characterized by more than one object of a certain class.
There are not too many cases, where this requirement is relevant.

Priority: medium

56

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RC19
It should be possible to specify intrinsic attributes through classes on levels higher
than M1 together with an intended instantiation level of those classes.

Rationale: There are cases where it is not possible to clearly specify the class
an intrinsic attribute will have at the level where it is supposed to be instantiated.
Due to our experience with the current version of the FMMLx the lack of deep
instantiation of attributes was not a major shortcoming.

Priority: low

RC20
The new version should allow for clearly distinguishing between attributes that are
regularly instantiated into individual values of instances, that are instantiated into
values of instances that actually represent common values of their instances, and
those that serve the specification of constraints on attribute values. At the same time,
corresponding access operations should be qualified accordingly.

Rationale: These different kind of properties have specific semantics that would be
lost, if there was no way to express it somehow, which in turn could compromise the
integrity of systems.
This requirement is fairly easy to satisfy and promises clear benefits.

Priority: high

RC21
It should be possible to assign categories to operations.

Rationale: Distinguishing categories of operations enables more meaningful
model queries and fosters models integrity.

Priority: high

57

RC22
It should be possible to link access operations to the objects they refer to, such as
attributes or associations.

Rationale: This additional information would facilitate the updating of opera-
tions after relevant aspects of the reference object had been changed.

Priority: high

RC23
The new version should support the specification of an association as dependant of
another one. That is, the instantiation of the dependant association must not happen
without the association it depends on being instantiated, too.

Rationale: Including a corresponding concept in the language does not only
free modellers from the specification of a corresponding constraint, it also increases
the likelihood that the dependency is explicitly modelled at all.

Priority: medium

RC24
It should be possible to express a specialization of an association as an association
between the same classes that are part of the generalized association.

Rationale: There is need for this specific kind of dependency. Providing a cor-
responding concept with the language contributes to productivity and integrity.

Priority: medium

58

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RC25
If the specialization of associations demands for subclasses of classes involved in the
generalized association, the use of delegation should be supported. That means that
the following constraint is enforced: only those instances of a role class may be linked
to instances of the associated class the corresponding instance of the role filler class
are linked to.

Rationale: Supporting this specific kind of association specialization should
support modelling convenience and model integrity.

Priority: medium

RC26
The new version of the FMMLx should allow for defining dependencies between
associations on different classification levels. In particular, it should be possible to
define an association on level m as a refinement of an association on level m+1.

Rationale: This concept allows preventing ambiguities arising from intrinsic
associations (see example in Fig. 2.17).

Priority: high

59

RT1
The language should include operations for advanced model analysis. That comprises
the creation of model statistics including those relevant for multi-level models.

Rationale: Writing code to analyse models will often be regarded as too time-
consuming. Adding respective operations as a default interface to models and to all
classes makes model analysis more convenient and more reliable.

Priority: high

RT2
The language should be supplemented by a specific query language that allows
querying all properties of a multi-level model and that is clearly easier to use than
the XOCL.

Rationale: Queries on multi-level models are of crucial importance not only
with regard to traditional model analysis, but also for retrieving objects and object
values on all classification levels covered by a multi-level model.
The upcoming, multi-level version of the XOCL will allow querying all aspects of a
multi-level model. However, it may be useful to define a more specific language, as
well as additional tools that enable more convenient queries.

Priority: medium

RT3
A modelling tool should support adding properties, both regular and intrinsic. This
includes accounting for possible side-effects.

Rationale: Adding properties is a regular operation during the development
of a model.

Priority: high

60

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RT4
A modelling tool should support deleting properties, both regular and intrinsic. This
includes accounting for possible side-effects.

Rationale: Deleting properties is a regular operation during the development
of a model.

Priority: high

RT5
A modelling tool should support the modification of properties, both regular and
intrinsic. Modifications relate to the name of a property as well as its specification.
Again, possible side-effects need to be accounted for, too.

Rationale: The modification of properties is a regular operation during the de-
velopment of a model. While it could be realized through deleting a property in the
original class and adding it in a new class, it is clearly more convenient to provide
moving as a single operation.

Priority: high

RT6
A modelling tool should support moving properties, both regular and intrinsic, from
one class within a hierarchy to another one.

Rationale: Moving properties from one class within a hierarchy to another one is an
operation that is required occasionally.

Priority: high

61

RT7
A modelling tool should allow for changing an object’s classification level without
compromising the integrity of a model.

Rationale: During the development of a model the classification hierarchy may have
to be modified. That includes deleting levels or inserting classes between existing
levels.

Priority: high

RT8
The language should allow for adding meta data that is relevant for storing a model’s
history.

Rationale: This is the prerequisite for keeping track of previous model states.

Priority: high

RT9
A modelling tool should allow for explicitly defining model versions and support the
rollback to previous versions.

Rationale: The explicit definition of versions enables the modeller to define
those states that represent a relevant step in the evolution of a model. As a con-
sequence, browsing through the history of previous model states should be more
clearly and more convenient.

Priority: high

RT10
A modelling tool should support the rollback to previous versions.

Rationale: This is an important feature in case one wants to reconstruct the
evolution of a model or to continue with a previous version after it turned out that it
is more appropriate than the current version.

Priority: medium

62

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RT11
Modelling tools should provide support for detecting the delta of two model versions.

Rationale: This feature helps to analyse the evolution of a model and to com-
pare two versions in particular.

Priority: medium

RT12
It should be possible to fade in/out intrinsic properties such as intrinsic attributes,
operations and associations.

Rationale:

Priority: medium

RT13
It should be possible to fade in/out inherited properties such as intrinsic attributes,
operations and associations. As a default, inherited properties are not shown.
However, it can be useful to present them. In that case, inherited properties should
be marked as such. See illustration of possible realization in Fig. 2.18.

Rationale:

Priority: medium

RT14
It should be possible to fade in/out operations that are available through delegation.
In case these operations are shown, they should be marked as such. See illustration
of possible realization in Fig. 2.19.

Rationale:

Priority: medium

63

RT15
It should be possible to fade in/out operations that are available through delegation
to class. If these operations are shown, they should be marked as such. See illustration
of possible realization in Fig. 2.20.

Rationale:

Priority: medium

RT16
A modelling tool that features dynamic typing should compensate for the lack of
static typing. This could be achieved by adding information to code.

Rationale: If the representation of code is ambiguous, the analysis of large models
can be painful and produce serious threats to system integrity.

Priority: medium

RT17
A modelling tool should support the generation of access methods according to
adaptable policies.

Rationale: Generating access operations decreases development costs and con-
tributes to comprehensibility and integrity of models and software.

Priority: high

RT18
A modelling tool should support the creation of user profiles. A user profile stores
user’s visualization preferences, which include font sizes, colour, the layout of
window frames, etc.

Rationale: Adapting the representation of a model to individual preferences
allows creating a more convenient and possibly more efficient environment. It is an
unnecessary burden for users, if they have to specify their preferences each time they
use a model (or an instance of the tool) that is used by others, too.

Priority: medium

64

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RT19
With respect to keeping track of the evolution of a model, a tool should also store the
users that were responsible for a certain modification.

Rationale: Sometimes, it is useful to find out who made certain modelling de-
cisions, especially, if they seem unclear or inappropriate.

Priority: medium

65

RN1
The notation should be in line with widespread notations of conceptual modelling
languages. That recommends to use shapes for the representation of classes similar to
those used with the UML. This is especially the case for the representation of classes
on M1, because they are typically subject of traditional object models.

Rationale: The use of familiar representations is likely to promote the under-
standability of multi-level models.

Priority: high

RN2
The notation should build on that of the previous version of the FMMLx and account
for critical feedback on the previous notation at the same time.

Rationale: The previous notation resulted from a long process of developing,
using, and improving multi-level modelling languages. Therefore, it seems reason-
able to assume that it is regarded as widely appropriate by those who used it. At
the same time, certain aspects of the notation were subject of critical comments that
should be accounted for.

Priority: medium

RN3
The additional concepts defined with the new version of the FMMLx , e.g., contingent-
level classes, should be represented clearly.

Rationale: This requirement is a direct consequence of the general demand
for understandability of models.

Priority: high

66

The FMMLx – Version 2.0: Analysis of Requirements and Technical Terminology

RN4
The representation of classification levels should follow certain design guidelines.

Rationale: In the previous version, the colours used for distinguishing classifi-
cation levels were chosen in a widely arbitrary manner, which made it difficult to
memorize what level a specific colour represented.

Priority: medium

67

Previously Published ICB Research Reports

2015

No 65 (August 2015)

Schauer, Carola; Schauer, Hanno: “IT- und Medienbildung an Schulen. Ergebnisse einer
empirischen Studie an einem rheinland-pflzischen Gymnasium”

No 64 (January 2015)

Föcker, Felix; Houdek, Frank; Daun, Marian; Weyer, Thorsten: “Model-Based Engineering
of an Automotive Adaptive Exterior Lighting System – Realistic Example Specifications of
Behavioral Requirements and Functional Design”

No 63 (January 2015)

Schauer, Carola; Schauer, Hanno: “IT an allgemeinbildenden Schulen: Bildungsgegenstand
und -infrastruktur – Auswertung internationaler empirischer Studien und Literaturanal-
yse”

2014

No 62 (October 2014)

Köninger, Stephan; Heß, Michael: “Ein Software-Werkzeug zur multiperspektivischen
Bewertung innovativer Produkte, Projekte und Dienstleistungen: Realisierung im Projekt
Hospital Engineering”

No 61 (August 2014)

Schauer, Carola; Frank, Ulrich: “Wirtschaftsinformatik an Schulen – Status und Desider-
ata mit Fokus auf Nordrhein-Westfalen”

No 60 (May 2014)

Heß, Michael: “Multiperspektivische Dokumentation und Informationsbedarfsanalyse
kardiologischer Prozesse sowie Konzeptualisierung ausgewählter medizinischer Ressour-
centypen im Projekt Hospital Engineering”

No 59 (May 2014)

Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Schypula, Melanie; Striewe,
Michael: “Zweiter Jahresbericht zum Projekt ‘Bildungsgerechtigkeit im Fokus’ (Teilprojekt
1.2 – ‘Blended Learning’) an der Fakultät für Wirtschaftswissenschaften”

No 58 (March 2014)

Breitschwerdt, Rüdiger; Heß, Michael: “Konzeption eines Bezugsrahmens zur Analyse und
Entwicklung von Geschäftsmodellen mobiler Gesundheitsdienstleistungen – Langfassung”

No 57 (March 2014)

Heß, Michael; Schlieter, Hannes (Hrsg.): “Modellierung im Gesundheitswesen – Tagungs-
band des Workshops im Rahmen der ”Modellierung 2014””

2013

No 56 (July 2013)

Svensson, Richard Berntsson; Berry,Daniel M.; Daneva, Maya; Doerr, Joerg; Espana,
Sergio; Herrmann, Andrea; Herzwurm, Georg; Hoffmann, Anne; Pena, Raul Mazo;
Opdahl, Andreas L.; Pastor, Oscar; Pietsch,Wolfram; Salinesi, Camille; Schneider, Kurt;
Seyff, Norbert; van de Weerd, Inge; Wieringa, Roel; Wnuk, Krzysztof (Eds.): “19th
International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2013). Proceedings of the REFSQ 2013 Workshops CreaRE, IWSPM,
and RePriCo, the REFSQ 2013 Empirical Track (Empirical Live Experiment and Empirical
Research Fair), the REFSQ 2013 Doctoral Symposium, and the REFSQ 2013 Poster
Session””

No 55 (May 2013)

Daun, Marian; Focke, Markus; Holtmann, Jörg; Tenbergen, Bastian “Goal-Scenario-
Oriented Requirements Engineering for Functional Decomposition with Bidirectional
Transformation to Controlled Natural Language. Case Study “Body Control Module””

No 54 (March 2013)

Fischotter, Melanie; Goedicke, Michael; Kurt-Karaoglu, Filiz; Schwinning, Nils; Striewe,
Michael “Erster Jahresbericht zum Projekt “Bildungsgerechtigkeit im Fokus” (Teilprojekt
1.2 – “Blended Learning”) an der Fakultät für Wirtschaftswissenschaften”

2012

No 53 (December 2012)

Frank, Ulrich: “Thoughts on Classification / Instantiation and Generalisation / Specialisa-
tion”

No 52 (July 2012)

Berntsson-Svensson, Richard; Berry, Daniel; Daneva, Maya; Dörr, Jörg; Fricker, Samuel
A; Herrmann, Andrea; Herzwurm, Georg; Kauppinen, Marjo; Madhavji, Nazim H;
Mahaux, Martin; Paech, Barbara; Penzenstadler, Birgit; Pietsch, Wolfram; Salinesi,
Camille; Schneider, Kurt; Seyff, Norbert; van de Weerd, Inge (Eds.): “18th International
Working Conference on Requirements Engineering – Foundation for Software Quality.
Proceedings of the Workshops RE4SuSy, REEW, CreaRE, RePriCo, IWSPM and the
Conference Related Empirical Study, Empirical Fair and Doctoral Symposium”

No 51 (May 2012)

Frank, Ulrich: “Specialisation in Business Process Modelling – Motivation, Approaches
and Limitations”

No 50 (March 2012)

Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz,
Philipp ; Schütz, Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-
Studien – Eine Metastudie zu serviceorientierten Architekturen”

2011

No 49 (December 2011)

Frank, Ulrich: “MEMO Organisation Modelling Language (2) – Focus on Business
Processes”

No 48 (December 2011)

Frank, Ulrich: “MEMO Organisation Modelling Language (1) – Focus on Organisational
Structure”

No 47 (December 2011)

Frank, Ulrich: “Multiperspective Enterprise Modelling – Requirements and Core Diagram
Typs”

No 46 (December 2011)

Frank, Ulrich: “Multiperspective Enterprise Modelling – Background and Terminological
Foundation”

No 45 (November 2011)

Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola:
“Leitfaden zur Erstellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2011)

Berenbach, Brian; Daneva, Maya; Dörr, Jörg; Fricker, Samuel; Gervasi, Vincenzo; Glinz,
Martin; Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H; Paech, Barbara;
Schockert, Sixten; Seyff, Norbert (Eds.): “17th International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ 2011) – Proceedings
of the REFSQ 2011 Workshops REEW, EPICAL and RePriCo, the REFSQ 2011 Empirical
Track (Empirical Live Experiment and Empirical Research Fair), and the REFSQ 2011
Doctoral Symposium”

No 43 (February 2011)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architec-
ture. 2nd Edition”

2010

No 42 (December 2010)

Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Lan-
guages”

No 41 (December 2010)

Adelsberger, Heimo; Drechsler, Andreas (Hrsg.): “Ausgewählte Aspekte des Cloud-
Computing aus einer IT-Management-Perspektive – Cloud Governance, Cloud Security
und Einsatz von Cloud Computing in jungen Unternehmen”

No 40 (October 2010)

Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg;
Janzen, Dirk; Merten, Thorsten; Pietschm, Wolfram; Schmid, Klaus; Schneider,Kurt;
Thurimella, Anil Kumar: “16th International Working Conference on Requirements
Engineering: Foundation for Software Quality – Proceedings of the Workshops CreaRE,
PLREQ,RePriCo and RESC”

No 39 (May 2010)

Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption
für den Studiengang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswis-
senschaften der Universität Duisburg-Essen”

No 38 (February 2010)

Schauer, Carola : “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen
von CIOs und WI-Professoren”

No 37 (January 2010)

Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop
on Variability Modelling of Software–intensive Systems”

2009

No 36 (December 2009)

Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstandnis der IT–
Governance – Anregungen zu einer kritischen Reflexion”

No 35 (August 2009)

Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.: “Considerations on Handling Link
Errors in SCTP”

No 34 (June 2009)

Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.):
“Workshop on Service Monitoring, Adaptation and Beyond”

No 33 (May 2009)

Adelsberger, Heimo; Drechsler, Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne,
Sophia; Pellinger, Jan; Rosenberger, Marcel; Trepper, Tobias: “Einsatz von Social Software
in Unternehmen - Studie über Umfang und Zweck der Nutzung”

No 32 (April 2009)

Barth, Manfred; Gadatsch, Andreas; Kutz, Martin; Ruding, Otto; Schauer, Hanno;
Strecker, Stefan: “Leitbild IT–Controller/–in . Beitrag der Fachgruppe IT–Controlling der
Gesellschaft fur Informatik e. V.”

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self–Referential
Enterprise Systems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: “Kriterien guter Wissensarbeit - Ein Vorschlag aus dem
Blickwienkel der Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International
Workshop on Variability Modelling of Software–intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: “Computer Aided Assessments and
Programming Exercises with JACK”

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Univer-
sitaten im deutschsprachigen Raum – Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Muller–Clostermann:“ CapSys: A Tool for Macroscopic Capacity
Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi–Touch beim
Softwaredesign am Beispiel der CRC Card–Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architec-
ture - Revised Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing -
Outline of an Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo–Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second
International Workshop on Variability Modelling of Software–intensive Systems.”

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-
management-Kreislauf”

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software”

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the
Relevance Debate”

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik:
Schritte der Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die
Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An
Analysis of Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and
Mainframe Capacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals
- Analyse und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden
für Softwarearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext
serviceorientierter Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an
Application to Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben
des IT Managements - Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender
Lehrbücher der Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Quali-
fizierung des wissenschaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen)
Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein
Forschungspro-gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information
Systems Research”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten - Ein Diskussions-
beitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
III - Results Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
II - Results Information Systems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinfor-
matik discipline: An interpretive evaluation of interviews with renowned researchers, Part
I - Research Objectives and Method”

No 1 (August 2005)

Lange, Carola: “Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und
-methoden in Wirtschaftsinformatik und Information Systems”

	

�������������������

���
���������������������������
���������������������

Ulrich Frank

Version 2.0: Analysis of Requirements and

Technical Terminology

ICB-Research Report No. 66

December 2018

Research Group Core Research Topics

Prof. Dr. F. Ahlemann
Information Systems and Strategic Management

Strategic planning of IS, Enterprise Architecture Management,
IT Vendor Management, Project Portfolio Management,
IT Governance, Strategic IT Benchmarking

Prof. Dr. F. Beck
Visualization Research Group

Information visualization, software visualization, visual analy-
tics

Prof. Dr. T. Brinda
Didactics of Informatics

Competence modelling and educational standards in Infor-
matics, Students‘ conceptions in Informatics, Education in the
digital world, Vocational education in Informatics

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research, Business Intelli-
gence, Data Warehousing

Prof. Dr.-Ing. L. Davi
Research in Secure Software Systems

Software Security, Security of Smart Contracts, Trusted Com-
puting, Hardware-assisted Security

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. J. Marrón
Networked Embedded Systems

Sensor Networks, Adaptive Systems, System Software for em-
bedded systems, Data Management in mobile environments,
Hoarding / Caching, Ubiquitous/Pervasive Computing, Semi-
structured databases

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. Ing. E. Rathgeb
Computer Network Technology

Computer Network Technology

Prof. Dr. S. Schneegaß
Human Computer Interaction

Mobile, wearable, and ubiquitous computing systems, Implicit
Feedback, Usable Security, Smart Clothing, Interaction in
Virtual and Augmented Worlds, Ubiquitous Interaction

Prof. Dr. R. Schütte
Business Informatics and Integrated Information Systems

Enterprise Systems, IS-Architectures, Digitalization of organisa-
tions, Information modelling, Scientific theory problems of the
Business Informatics field

Prof. Dr. S. Stieglitz
Professional Communication in Electronic Media / Social
Media

Digital Enterprise / Digital Innovation, Digital Society

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

66The Flexible Multi-Level Modelling
and Execution Language (FMMLx)

	DocumentServlet-1.545.384.687.096
	ICB_Report_66
	1 Introduction
	2 New Requirements
	2.1 Language Core
	2.1.1 Contingent Levels
	2.1.2 ``Classless'' Classes
	2.1.3 Distinction of Instantiation Levels within Associations
	2.1.4 Deferred Specification of Associations
	2.1.5 Avoiding Redundant Specification
	2.1.6 Auxiliary (Meta-) Classes
	2.1.7 Differentiation of Uni- and Bi-Directional Associations
	2.1.8 Support of Delegation
	2.1.9 Support for the Specification of Further Association Types
	2.1.10 Multiplicities of Attributes
	2.1.11 Deferred Instantiation of Attribute Classes
	2.1.12 Specification of Dependencies between Model Elements

	2.2 Analysis and Management of Models
	2.2.1 Model Analysis
	2.2.2 Support for Changes
	2.2.3 Model History
	2.2.4 Information Filtering
	2.2.5 Compensation for Lack of Static Typing
	2.2.6 Model Completion
	2.2.7 User Management

	2.3 Concrete Syntax

	3 Terminology
	3.1 Misleading Application of Current Terminology
	3.2 Limitations of Current Terminology
	3.3 Proposal for Specialized Terminology

	4 Conclusions
	Bibliography
	A Appendix: List of Requirements

