
The MEMO Meta Modelling Language (MML) and Language Architecture

Frank, Ulrich

In: ICB Research Reports - Forschungsberichte des ICB / 2008

This text is provided by DuEPublico, the central repository of the University Duisburg-Essen.

This version of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47113

URN: urn:nbn:de:hbz:464-20180920-081429-5

Link: https://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=47113

License:
As long as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage
only with permission, except applicable rules of german copyright law.

Source: ICB-Research Report No. 24, August 2008

https://doi.org/10.17185/duepublico/47113
http://nbn-resolving.org/urn:nbn:de:hbz:464-20180920-081429-5
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47113

Revised Version (April 2010)

ICB-Research Report No. 24

August 2008

The MEMO Meta Modelling Language

(MML) and Language Architecture

Ulrich Frank

Die Forschungsberichte des Insti tuts
für Informatik und Wirtschaftsinfor ‐
matik dienen der Darstellung vorläu ‐
f iger Ergebnisse, die i . d. R. noch für
spätere Veröffentlichungen überarbei‐
tet werden. Die Autoren sind deshalb
für kritische Hinweise dankbar.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Contact :

Insti tut für Informatik und
Wirtschaftsinformatik (ICB)
Universi tät Duisburg‐Essen
Universi tätsstr . 9
45141 Essen

Tel. : 0201‐183‐4041
Fax: 0201‐183‐4011
Email : icb@uni‐duisburg‐essen.de

Authors’ Address:

Ulrich Frank

Insti tut für Informatik und
Wirtschaftsinformatik (ICB)
Universi tät Duisburg‐Essen
Universi tätsstr . 9
D ‐45141 Essen

ulrich.frank@uni ‐due.de

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica‐
t ions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Übersetzung, des Nachdru‐
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen – auch bei
nur auszugsweiser Verwertung.

ISSN 1860‐2770 (Print)
ISSN 1866‐5101 (Online)

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff
Prof. Dr. Klaus Echtle
Prof. Dr. Stefan Eicker
Prof. Dr. Ulrich Frank
Prof. Dr. Michael Goedicke
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Müller ‐Clostermann
Prof. Dr. Klaus Pohl
Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

ii

Abstract
The family of languages that builds the foundation of the MEMO method is intended to feature a
high degree of inter-language integration. For this purpose, the languages need to share common
concepts. In order to define concepts that are semantically equivalent, it is recommendable to use
the same meta modelling language for specifying the MEMO modelling languages. The previous
version of the meta modelling language used for this purpose needed a revision. At the same time,
there was need to account for alternative approaches to specifying modelling languages, espe-
cially those offered by the OMG or the Eclipse foundation. This report starts with an analysis of
requirements that should be accounted for by a meta modelling language. Subsequently, the UML
infrastructure library and meta object facility (MOF) are evaluated against these requirements. In
addition to that, the report presents an evaluation of the Ecore model, which serves to represent
meta models within the Eclipse Graphical Modeling Framework (GMF). The evaluation of both
approaches shows that none of them is satisfactory as a meta modelling language for enterprise
modelling. Then, the new version of the MEMO meta modelling language (MML) is presented. The
language specification consists of a meta meta model that specifies that semantics and abstract
syntax and a corresponding graphical notation (concrete syntax). The new version features a con-
cept called intrinsic features that allows for differentiating between features that apply to types and
those that apply to instances. It also includes a modified graphical notation that supports a clear
distinction of meta models from models on other levels of abstraction. Finally, the report presents the
outline of a tool that supports the creation and editing of MEMO meta models as well as their trans-
formation into representations which can be used in the Eclipse modelling framework.

Revised Version
This version was created on April 25th, 2010. The revision is restricted to a few changes. First,
there are additional concepts to define data types of attributes (see Figure 6). In the previous ver-
sion, the particular basic types such as Integer, String etc. were specified as specialisations of the
generic type DataType. However, this is not appropriate: Using DataType in the meta meta
model implies to instantiate it on the meta level. The instantiation of DataType was not meant to
result in particular values, such as 35 or ‘Customer’, but in data types. To express this different ab-
straction, DataType was changed into MetaDataType and the specialisation relationships were
changed into instantiation relationships. As a consequence, the meta meta model itself required a
small modification, too: The single occurrence of DataType was changed into MetaDataType.
Furthermore, the meta meta model is extended to provide for specifying attributes with enumerations
and intervals. Second, the meta meta type MetaAttribute is extended by the attributes de-
ferred, deferredExternal and simulation. They allow to express that corresponding
values may be deferred from other parts of a model or from external sources – or that they may
serve simulation purposes. Finally, the attribute isSingleton was added to MetaEntity to
allow for specifying meta types as singletons.

iii

Table of Contents
ABSTRACT .. II

TABLE OF CONTENTS ... III

FIGURES .. IV

TABLES ... V

TYPOGRAPHICAL CONVENTIONS .. V

1 INTRODUCTION ... 1

2 META MODELLING LANGUAGES: REQUIREMENTS ... 2

2.1 GENERAL REQUIREMENTS FOR META MODELLING LANGUAGES ... 3
2.1.1 Formal Requirements .. 4
2.1.2 User-Oriented Requirements .. 4
2.1.3 Application-Oriented Requirements ... 5

3 META META MODELS: PREVALENT APPROACHES .. 7

3.1 UML: INFRASTRUCTURE LIBRARY AND THE META OBJECT FACILITY .. 7
3.2 ECLIPSE FOUNDATION: ECORE ... 13

4 LANGUAGE SPECIFICATION ... 16

4.1 BASIC DATA TYPES OR DOMAINS .. 16
4.2 INTRINSIC FEATURES .. 17
4.3 THE META META MODEL .. 20
4.4 THE GRAPHICAL NOTATION .. 23
4.5 EXAMPLES .. 26
4.6 PRELIMINARY EVALUATION ... 28

5 THE MEMO LANGUAGE ARCHITECTURE ... 30

6 OUTLINE OF A MODELLING TOOL ... 32

7 FUTURE RESEARCH .. 34

REFERENCES ... 35

iv

Figures

Figure 1: Semantic net of key terms and corresponding levels of abstraction 3

Figure 2: EMOF or part of the infrastructure library respectively ... 9

Figure 3: Revised version of EMOF ... 9

Figure 4: CMOF: “Key concrete classes” ... 11

Figure 5: Ecore ... 14

Figure 6: Basic data types used within the meta meta model .. 17

Figure 7: Exemplary use of a power type – adapted from [Odel98] 18

Figure 8: Example modelled with clabjects – according to [AtKü07] 19

Figure 9: Example modelled with intrinsic attributes, associations and types 20

Figure 10: The MEMO meta meta model ... 22

Figure 11: Elements of the graphical notation .. 25

Figure 12: Options to mark the elements of a meta model as belonging to a
particular language ... 25

Figure 13: A meta model of the ERM ... 26

Figure 14: Differentiating two meta models through specific symbols 27

Figure 15: The use of intrinsic features ... 28

Figure 16: The MEMO language layers ... 30

Figure 17: The MEMO language architecture and corresponding conceptual foundation for
modelling tools ... 31

Figure 18: The MEMO meta meta model as an Ecore instance .. 32

Figure 19: Simplified workflow for developing additional model editors within MEMO Center 33

v

Tables

Table 1: Evaluation of MOF and the UML infrastructure library respectively 12

Table 2: Evaluation of Ecore .. 15

Table 3: Representation of textual elements ... 24

Table 4: Evaluation of the MEMO meta modelling language ... 29

Typographical Conventions

If textual elements of meta (meta) models are referred to in the standard body text, they are printed
in Courier italic, e.g. MetaEntity.

Introduction

1

1 Introduction

Multi-Perspective Enterprise Modelling (MEMO), a method to guide the design and analysis of en-
terprise models, is based on a set of modelling languages that allow for creating conceptual mod-
els that represent various perspectives on an enterprise. These languages are specified through
meta models. In order to foster the integration of these languages and – as a consequence – of the
corresponding models, it is required that the language specifications, i.e. the meta models, make
use of common concepts. This in turn recommends using common concepts for specifying the meta
models. In other words: The MEMO languages should be specified using the concepts of a com-
mon meta meta model. Such a model was defined some time ago [Fran98a]. It has been success-
fully used for the specification of MEMO modelling languages. However, various developments of
the previous years recommend rethinking the design of the meta meta model. The experiences we
gathered with designing meta models resulted in additional requirements. Also, we were not satis-
fied any more with some decisions the first version of the meta meta model is based on. Further-
more, the remarkable relevance the UML has gained recommends taking into account its language
architecture. Last but not least, it is useful to account for the development of modelling tools: Exploit-
ing the potential of a modelling language will often recommend using a corresponding modelling
tool. Since the implementation of a modelling tool implies a major investment, it will often be no
option to develop a tool from scratch. A number of tools, especially so called meta modelling tools,
promise to increase the productivity of developing modelling tools tremendously. Among these de-
velopment environments, one has gained special relevance. The Eclipse Modeling Framework
(EMF) as well as the Eclipse Graphical Modeling Framework (GMF) are subject of an open source
project. They are supported by a large community of developers and users. The GMF targets the
development of graphical modelling tools. To develop a specific modelling tool, the corresponding
language specification has to be reconstructed using the meta model provided with the framework.
This meta model, called Ecore, serves to generate Java classes which in turn represent language
concepts. Hence, using GMF recommends analysing how the concepts of the intended meta meta
model can be transformed to Ecore concepts. As an alternative, Ecore could be used directly as the
meta meta model for specifying the MEMO languages. This requires evaluating whether Ecore
could satisfy this purpose.

Against this background, we will first look at requirements a meta meta model for specifying model-
ling languages should satisfy. MOF and Ecore are then evaluated against these requirements – to
come to the conclusions that none of them is a satisfactory candidate for serving as the MEMO
meta meta model. Subsequently, the revised version of the meta meta model will be presented and
evaluated. Finally, we will demonstrate how to map concepts of the meta meta model to Ecore
concepts.

The MEMO Meta Modelling Language – Revised Version

2

2 Meta Modelling Languages: Requirements

Designing a modelling language implies the analysis of the requirements it should satisfy. This is the
case for meta modelling languages, too. As with any modelling language, the requirements de-
pend crucially on the purpose the language should serve. There seem to be no publications that
focus explicitly on requirements for meta meta models. However, there has been work on evaluat-
ing modelling languages that can be referred to, since meta meta models define the semantics and
abstract syntax of meta modelling languages. Studies on general requirements for modelling lan-
guages do not account for the particularities of a specific language. Instead, they are aimed at
generic requirements that apply to any language. There seem to be no empirical studies that target
generic requirements. Instead, the few empirical studies that have been conducted so far, target
particular kinds of languages, mainly data modelling languages. Also, they are not aimed directly
at developing requirements, but rather at the empirical evaluation of certain modelling languages
(see e.g. [GoSt90], [Hitc95]). In software engineering, the main focus is on formal requirements a
modelling language should fulfil. A typical example of this perspective is given by [SüEb97] who
demand for properties such as completeness, simplicity, and correctness. Completeness means that
all language concepts should be precisely defined. This includes constraints that apply for their
application. Simplicity recommends reducing the meta model to essential concepts, hence, avoid-
ing redundant concepts. A meta model is correct, if it allows for generating all formally valid mod-
els and for deciding whether a model is formally correct. Apparently, these formal requirements
suggest formalizing a meta model. They do not, however, indicate which concepts are required
and how they should be presented. In addition to that, the analysis of languages in computer sci-
ence is sometimes related to their expressive power, for instance by referring to a particular layer of
the Chomsky hierarchy. However, since the Chomsky hierarchy is focussing on grammars and on
automata, it is not directly applicable to meta models. Approaches that focus on ontologies as a
theoretical foundation for modelling languages, such as [Webe97] or [OpSe99], suggest that a
modelling language should be “ontologically” complete. This implies that it should include concepts
for static, functional and dynamic abstractions. Apparently, such an approach neglects the fact that
a modelling language will often emphasize a particular abstraction while leaving out others on
purpose. Hence, it does not need to be “ontologically complete”. With respect to the design of a
meta language, the claim for ontological completeness seems to be more reasonable at first sight,
since a meta language should allow for specifying a wide range of modelling languages. While
the specification of requirements for modelling languages faces remarkable problems [Fran98b],
defining requirements for meta modelling languages is even more challenging. Although we are
able to reflect upon language, it is commonly regarded as a competence that we cannot entirely
comprehend ([Lore96], p. 49). While this is demanding already for distinguishing between the
type and meta level languages, a further level of abstraction takes us closer to ontological or se-
mantic primitives, which determine our own thinking.

To encounter the confusion that is imminent to the distinction of language layers, it is important to
strive for a differentiated terminology. The semantic net in Figure 1 shows key terms of this report
and the corresponding levels of abstractions. The numbers used to identify the levels correspond to
common conventions, starting with level 0 for representations of instances. A model (level M1) is
specified by a modelling language, which in turn is – partially – specified by a meta model (level
M2). At the same time, a model is an instance of a meta model, which in turn is an instance of a
meta meta model. Note that the semantic net includes a simplification: Not only a modelling lan-
guage on the M2 level, but also all meta modelling languages are comprised of a specification of
their semantics and syntax. The syntax can be differentiated into abstract syntax and concrete syn-
tax (graphical notation). A meta model serves to specify the abstract syntax and semantics only.

Meta Modelling Languages: Requirements

3

SyntaxSemantics

Meta
Modelling
Language

Meta Meta
Meta Model

Domain
State

Technical
Language

specifies

specifies

specifies

purposeful abstraction of

in
st

an
ce

 o
f

Meta Meta
Model

in
st

an
ce

 o
f

specifies

specifies

in
st

an
ce

 o
f

Model

is a

is a
is a

part of

part of
part of

Concrete
Syntax

pa
rt

of
Abstract
Syntax

specifies

specifies

Universe of
Discourse

cr
ea

te
d

th
ru

reconstruction of

in
st

an
ce

 o
f

represents

has a

represents

Domain

Instance
Population

M1

M4

M3

M0

specifies

is a

Meta Meta
Modelling
Language

Modelling
LanguageMeta Model

M2

Figure 1: Semantic net of key terms and corresponding levels of abstraction

[FrLa03] present a framework for requirements of domain specific modelling languages. For ana-
lytical purposes, these criteria are differentiated into formal, user-oriented and application-oriented
requirements. Note that these are not orthogonal dimensions. These generic requirements need to
be further refined for a specific language. Although the framework was designed for modelling
languages (level M2), its generic structure can be applied to meta modelling languages, too.

2.1 General Requirements for Meta Modelling Languages

Formal requirements are of special relevance for meta modelling languages, because they are a
prerequisite for the (semi-) formal specification of modelling languages.

User-oriented requirements refer to the prospective users’ perception of meta language concepts
and their visualisation.

Application-oriented requirements are determined by the intended modelling domains and generic
modelling purposes. They are related to the question whether a meta modelling language should
be ontologically complete.

The MEMO Meta Modelling Language – Revised Version

4

2.1.1 Formal Requirements
A meta modelling language should allow for the unambiguous specification of modelling lan-
guages. The resulting language specifications should also provide a foundation for the development
of corresponding modelling tools. For these reasons, the abstract syntax of a meta modelling lan-
guage itself needs to be specified precisely.

Requirement F1: The specification of a meta modelling language should include a formal
specification of its abstract syntax.

In order to foster appropriate interpretations of the modelling languages to be designed with a meta
modelling language, the semantics of a meta modelling language should be defined precisely, too.

Requirement F2: In the ideal case, there should be a formal specification of a meta model-
ling language’s semantics. Hence, the specification should be complete and correct. Since a
complete formalisation of semantics will sometimes imply too much of an effort, it may be suf-
ficient to specify the semantics in a way that is regarded as unambiguous by expert users.

Requirement F3: To foster formalisation and comprehensibility, a meta modelling language
should satisfy the demand for simplicity (see also requirements A1, A2).

The specification of a meta modelling language requires a meta meta modelling language, which
in turn needs to satisfy certain demands.

Requirement F4: To contribute to a precise or even formal semantics, the meta meta model-
ling language used to specify the meta modelling language should be a formal language. In
order to avoid a further language to describe the concepts of a meta modelling language, it
should feature a limited set of concepts only. This set of concepts is sufficient, if it allows for
specifying all concepts required on the meta modelling language level. In other words: The
meta modelling language should be clearly simpler than the modelling languages it is sup-
posed to describe.1

2.1.2 User-Oriented Requirements
Only very few people will use a meta modelling language. Designers of modelling languages
are the main target group. Furthermore, designers of modelling tools might be interested as well.
We assume that prospective users of a meta modelling language are experts for conceptual
modelling.

Requirement U1: The concepts of a meta modelling language should correspond to con-
cepts modelling experts are familiar with. Since concepts used for creating static abstractions
such as data models or class diagrams are well known within the group of prospective users,
they seem to be especially suited for this purpose.

The concrete syntax of a modelling language should contribute to the comprehensibility of corre-
sponding models. Since prospective users are expected to be familiar with the ERM or an object-
oriented modelling language such as the UML, using a graphical notation that corresponds to one
of these languages seems to be an adequate approach. On the other hand, there is need for dis-
tinguishing between different levels of abstraction.

Requirement U2: The languages used on different levels of abstraction, such as a meta
modelling language or a modelling language, should be clearly separated. Using one lan-
guage for different levels of abstraction should be avoided.

1 Note that this does not exclude that the meta modelling language is also used for the specification of less complex languages.

Meta Modelling Languages: Requirements

5

Users of a meta modelling language will often deal with static modelling languages and corre-
sponding models, e. g. with object models. This would suggest deploying a graphical notation that
is different from those of languages for creating static abstractions. The following requirement re-
flects this conflict of goals:

Requirement U3: The graphical notation of a meta modelling language should correspond
to prevalent graphical notations, e.g. of data or object modelling languages. At the same
time, the notation should include elements that allow for distinguishing a meta model from an
object-level model at first sight (related to U1, U2).

2.1.3 Application-Oriented Requirements
A meta modelling language should be suited for specifying a wide range of modelling languages,
if not any modelling language. Within our research, the focus is on languages for enterprise model-
ling. These include static abstractions such as object models or resource models, functional abstrac-
tions such as message flow diagrams or dynamic abstractions such as business process models.
That does not imply, however, that a meta modelling language needs to offer specific concepts for
creating functional or dynamic models: The purpose of a meta meta model is to model of a set of
meta models. A meta model is essentially a static abstraction – even if it includes concepts that are
intended for representing functional or dynamic aspects. Therefore, a meta modelling language
does not need to be ontologically complete. The claim for simplicity implies that a meta modelling
language should not include concepts that are abstractions of machines, such as ‘operation’ or of
human action, such as ‘task’.

Requirement A1: A meta modelling language should offer all concepts required to specify
languages in the scope of enterprise modelling.

Requirement A2: A meta modelling language should be restricted to concepts required for
language design.

Requirement A3: A meta modelling language can be instantiated into meta models. Since
meta models will often leave semantic gaps, the meta modelling language should also fea-
ture additional language elements that allow to express constraints on the interpretation of a
meta model.

A meta modelling language is aimed at the specification of modelling languages, which will often
be represented within corresponding modelling tools.

Requirement A4: In order to facilitate the development of tools, e.g. by generating object
models from a meta model, the concepts offered by a meta modelling language should allow
for a clear mapping to concepts used for software development. This suggests using a meta
modelling language that already features such a mapping.

While a modelling language is usually focused on the description of concepts, e.g. types or
classes, instead of particular instances, it is sometimes required to express characteristics that apply
to all instances of a type. To give an example: The concept “process” within a language for model-
ling business processes serves to specify characteristics of a process type. While it is a well known
fact that any process instance starts and terminates at a certain point in time, it is not possible to
express this as an attribute of a process type. A process type may also have a certain lifetime. This
is, however, clearly different from the lifetime of its instances.

Requirement A5: A meta modelling language should allow for distinguishing between differ-
ent levels of abstractions. This includes especially the distinction between characteristics of
types and of corresponding instances.

The MEMO Meta Modelling Language – Revised Version

6

The value of a language depends on its dissemination: The more languages are specified through
a meta modelling language, the better the chance to integrate these languages. Also, dissemination
fosters the creation and reuse of tools that make use of a meta modelling language. In addition to
dissemination, the standardization of a language contributes to protecting investments into corre-
sponding tools and meta models. However, dissemination and standardization are orthogonal to
the inherent quality of a language. It cannot be accomplished by designing a language. Instead, it
requires economic and political processes. Hence, demanding for dissemination and standardiza-
tion as a necessary feature would compromise the design of new meta modelling languages.

Requirement A6: A meta modelling language should account for dissemination and stan-
dardization. If there are other languages for similar purposes that enjoy a higher dissemina-
tion and/or standardization, there should be a clearly defined mapping to the concepts of
these languages.

Note that the requirements outlined above lack precision. In part, this is owed to the fact that one
usually does not know in advance all the modelling languages that need to be specified with a
meta modelling language. For this reason, it is required that any particular interpretation of the re-
quirements should be elucidated.

Meta Meta Models: Prevalent Approaches

7

3 Meta Meta Models: Prevalent Approaches

Only few meta meta models have been published so far. Some meta modelling tools, such as
MetaEdit+ ([KeLy+96], http://www.metacase.com) or Cubetto (http://www.semture.de) feature
meta meta concepts that allow for representing language specifications. However, these concepts
are either not specified as meta meta models or not published as such. Besides, the main focus of
these concepts would not be language specification, but support for tool development, which re-
quires accounting for additional aspects such as versioning or user management. ADONIS, a fur-
ther meta modelling tool, features a meta meta model. It is published, however, only in part
([JuKü+00], p. 395, translated in [Fill05], p. 4). IDEF (Integrated Definition Methods) features a
remarkable range of modelling languages. However, IDEF (for rationale and overview see
[MaPa+92]) does not include a meta meta model. Furthermore, even the languages lack a specifi-
cation through meta models. The language architecture, the UML is based on, features a meta meta
model, the so called Meta Object Facility (MOF). With respect to dissemination and availability of
corresponding tools, the UML is of outstanding relevance. For this reason, we will analyse whether
the MOF could serve as a satisfactory meta meta model for the MEMO family of languages. In
most cases, the efficient use of a modelling language recommends the use of a corresponding
modelling tool. Therefore, it makes sense to account for approaches to reduce the effort required to
build a tool. While meta modelling tools should offer clear advantages with respect to realizing
model editors quickly, they lack a comprehensive framework that would support the implementation
of additional functionality. In recent years, an open source software initiative – the Eclipse founda-
tion – has achieved a set of tools and extensible software frameworks that have become the plat-
form of choice for the development of modelling tools for many.

3.1 UML: Infrastructure Library and the Meta Object Facility

Obviously, the UML is the most important language for conceptual modelling. Its primary focus is on
a family of modelling languages to support software systems modelling. The early versions of the
UML suffered from a specification that lacked precision and consistency. With UML 2.0 the OMG
aimed at overcoming these problems by providing a more elaborate specification. At the same
time, the OMG launched its so called “Model-Driven Architecture” initiative (MDA), which is sup-
posed to facilitate the generation of implementation level documents from conceptual models. This
required accounting for mapping modelling concepts to implementation level concepts or for the
peculiarities of implementation level artefacts, e.g. interfaces to middleware systems. These two
streams of development resulted in the current structure of UML languages. Unfortunately, this struc-
ture or language architecture is all but easy to understand. On the one hand, the so called infra-
structure library provides the basic linguistic concepts that are used to define the UML languages:
“All of the UML metamodel is instantiated from meta-metaclasses that are defined in the Infrastruc-
tureLibrary.” ([OMG06b], p. 15) While the infrastructure library is explicitly referred to as “meta-
language” or “meta metamodel” (e.g. [OMG06b], p. 11), it is called a meta model at the same
time. It serves to specify a basic subset of the UML that is used to define compliance level 0 (for
tools that are certified by the OMG). Also, the infrastructure library is reused within the comprehen-
sive UML specification, called superstructure. Hence, within the UML family of modelling lan-
guages, the infrastructure library acts both as a meta-metamodel and as a metamodel: "The Infra-
structureLibrary is in one capacity used as a meta-metamodel and in the other aspect as a meta-
model, and is thus reused in two dimensions." ([OMG06b], p. 15) At the same time, the language
definition is reflexive, since the infrastructure library is specified through a subset of UML class dia-

The MEMO Meta Modelling Language – Revised Version

8

grams. Note that this overloading of a language with different levels of abstractions is a clear viola-
tion of requirement U2.

The confusion gets even worse with the introduction of the Meta Object Facility (MOF,
[OMG06a]). MOF is intended to serve as a cornerstone of the MDA initiative. Following the idea
of defining language packages, MOF is separated into the essential MOF (EMOF) and the com-
plete MOF (CMOF). For this purpose, it allows to specify all UML languages. It also includes con-
cepts that correspond to artefacts that are required for integration purposes, such as Interface Defini-
tion Languages, the Common Warehouse Model (CWM), the Enterprise Java Beans (EJB) model
and XMI. Furthermore, it features transformation rules to these representations. These rules can be
applied to any language that is specified through the MOF. Hence, MOF seems to be a meta
modelling language (or at least a meta meta model). However, this is not clear. While the MOF is
explicitly intended to act as a meta meta model for instantiating meta models (“… MOF is an ex-
ample of a meta-metamodel.” ([OMG06b], p. 16), there is a disclaimer in the documentation: „In
the four-layer metamodel hierarchy, MOF is commonly referred to as a meta-metamodel, even
though strictly speaking it is a metamodel." ([OMG06b], p. 16). The following excerpt from the
MOF specification ([OMG06a], p. 11) illustrated the confusion caused be the UML language ar-
chitecture (or rather: the lack of an architecture): “In particular, EMOF and CMOF are both de-
scribed using CMOF, which is also used to describe UML2. EMOF is also completely described in
EMOF by applying package import, and merge semantics from its CMOF description. As a result,
EMOF and CMOF are described using themselves, and each is derived from, or reuses part of, the
UML 2.0 Infrastructure Library.” Figure 2 shows a central part of the EMOF ([OMG06a], p. 33).
Exactly the same model is presented as the part of the infrastructure library that defines „the con-
structs for class-based modelling“ ([OMG06b], p. 93).

It seems that the difference between the infrastructure library and the MOF is mainly related to their
purposes. On the one hand, the infrastructure library serves to provide basic concepts needed for
specifying more elaborate concepts of UML languages. On the other hand, the MOF – while serv-
ing to specify languages, too – is aimed at providing a framework that facilitates the integration of
modelling tools with other systems used for the development of (distributed) systems. This includes
the definition of transformation rules.

Figure 2

A closer
copies o
sociation
model. H
that the
revised v

2: EMOF or p

r look at EM
of classes. T
ns it is invol
Hence, mult
OMG viola

version of EM

isAbs

superclass

0..*

ra

part of the inf

MOF reveals
The semantic
ved in. For
iple copies
ates this we
MOF that av

stract : Boolean =
Class

Type

0..*

{ordere

cla
ss0..1

aisedException

frastructure li

some surpr
cs of an entit

this reason,
of an entity

ell known pr
voids multiple

false

Typ

Ope

-class

0..1

ow
ne

d
op

er
at

io
n

o

ed}

{

0..*

0..*

Figure 3: R

9

ibrary respec

ising feature
ty type (or a
, an entity ty
type make i

rinciple of g
e copies of e

i
d
i
i
i

pedElement

ration

0..*

wned attribute

{ordered}

0..1

Revised versio

Meta Meta

ctively ([OMG

es. Firstly, its
a class) depe
ype should
it difficult to

good modell
entity types.

isReadOnly : Boole
default : String [0..
isComposite : Bool
isDerived : Boolean
isID : Boolean

Propert

isOrd
isUni
lower
uppe

M

0..*{ordered}

0..1

owned paramete

on of EMOF

a Models: P

G06a], p. 33

s representat
ends on its a
be depicted
catch its me
ing practice

ean = false
1]
lean = false
n = false

ty

Parameter

dered : Boolean = f
que : Boolean = tr
r : Integer = 1

er : UnlimitedNatura

MultiplicityEleme

1

opposite

r

Prevalent App

3; [OMG06b

tion includes
attributes an
d only once
eaning. It is
e. Figure 3

false
ue

al = 1

ent

proaches

b], p. 93)

s multiple
d the as-
within a
amazing
shows a

The MEMO Meta Modelling Language – Revised Version

10

In addition to that, the EMOF specification suffers from unclear semantics. Supertypes such as Type
or TypedElement remain unspecified. Concepts such as Operation or Parameter are ap-
parently underspecified. To give a few examples: It is not explicated what the attributes mean that
are assigned to Property. Nor does the reader get any support with understanding the meaning
of the association named “opposite”. Also, it is not clear what “default : String [0..1]” is supposed
to mean. If EMOF is interpreted as a meta meta model, the pre-initialisation of attributes, such as
“isReadOnly : Boolean = false”, is confusing. Does that mean that an instantiation of the corre-
sponding class would allow for this attribute having the value “false”? With respect to the purpose
of a meta meta model, i.e. the definition of a modelling language, it seems beside the point to
include concepts such as Operation or Parameter, since they imply the existence of software
– a clear violation of requirement A2 and requirement F3. CMOF, which serves as the meta lan-
guage to specify EMOF, is clearly more complex. This is a violation of requirement F4. It may be
that these semantic gaps are filled somewhere in the jungle of cross-referencing UML specifications.
However, the MOF specification itself [OMG06a] is not complete. CMOF is not only used to spec-
ify EMOF. It also serves for “more sophisticated metamodeling” ([OMG06a], p. 31). Figure 4
shows “key concrete” classes of CMOF. It seems that concepts used both in EMOF and CMOF do
not need to share the same meaning. In EMOF, Class is specialized from Type. According to
Figure 4, Class within CMOF is not specialized from Type, but from Classifier. The con-
cept Property is not specified consistently either. Association is specialized from Rela-
tionship. However, the semantics of Relationship is not specified at all. This is the case for
StructuralFeature, too.

While the CMOF is supposedly a comprehensive (“complete”) model, it leaves semantic gaps as
well. Superclasses such as Relationship, Type or StructuralFeature remain unspeci-
fied. While the might be specified somewhere else, this is not what one would expect from a
document that is to specify MOF.

Meta Meta Models: Prevalent Approaches

11

Figure 4: CMOF: “Key concrete classes” ([OMG06a], p. 47)

Evaluating the language architecture of the UML requires accounting for some interrelated peculiari-
ties:

No clear differentiation between language specification and tool design: While the UML is primar-
ily aimed at a standard for modelling languages, an essential purpose of this standard is to facili-
tate the certification of tools. Therefore the meta models include concepts such as operations or
events, which are intended to guide the implementation of modelling tools (see example in Figure
4). As a consequence, the EMOF (as well as the infrastructure library) includes the concept Op-
eration.

Not intended for specifying languages for enterprise modelling: The UML is primarily a family of
modelling languages for software development. Therefore the focus is on concepts that allow for
abstractions of software systems. As a consequence, the meta meta model includes specific con-
cepts required for software system modelling.

Not directly intended for specifying modelling languages: While both EMOF and CMOF are ex-
plicitly intended to support the specification of meta models (see e.g. [OMG06a], p. 31), they are

The MEMO Meta Modelling Language – Revised Version

12

not directly used for specifying the UML itself. The UML is specified using the infrastructure library
which is also reused in the MOF. It seems that the main purpose of the MOF is to define object
models as a foundation for tool integration. Hence, the MOF is rather intended for defining meta
models that define the concepts to be shared by a set of tools that are to be integrated. Neverthe-
less, the MOF can be regarded as a meta meta model, since it serves to describe meta models.

Evolutionary, pragmatic approach: The UML resulted from multiple contributions from industry and
academia. This included accounting for specific interests and preferences, which compromised a
concise and coherent language design. While numerous misconceptions and specification gaps
were eliminated in the latest version (2.0), the UML still suffers from this burden of its evolution.

Table 1 shows the evaluation of the UML infrastructure library (or the MOF respectively) against the
requirements for meta modelling language suggested above.

Req. Eval. Comment

F1 o Apparently, the languages that serve as meta modelling languages make use of the infrastructure
library. At the same time, the infrastructure library is used to specify the abstract syntax of UML class
diagrams. While this is not convincing, the abstract syntax of UML class diagrams is defined
(rather) precisely. Therefore, from a pragmatic point of view, it can be regarded as sufficiently
specified.

F2 - In the core specification document [OMG06a], the specification both of EMOF and CMOF is not
complete and leaves the language designer with many questions concerning the semantics.

F3 - Both EMOF and CMOF include concepts that are related to modelling tools. Therefore, both mod-
els are more complex than they needed to be, if they were intended for modelling language speci-
fication only.

F4 - CMOF, which is used to specify the EMOF, is clearly more complex than the EMOF. At the same
time, the MOF is defined using the infrastructure library which is not only more complex, but is also
used for the same purpose as MOF, i.e. to specify meta models.

U1 + The meta meta model is specified in the same notation as the UML itself. Hence, its representation
can be expected to be comprehensible for many language designers.

U2 - The same concepts are used on different levels of abstraction. The language architecture adds to
the confusion.

U3 - Different levels of the language architecture make use of the same notation.

A1 + The UML meta language concepts should be sufficient for specifying enterprise modelling lan-
guages.

A2 - The UML does not only serve as a language specification, but also as a reference for certifying
tools. Therefore, the language concepts are not clearly separated from concepts that relate to tool
specification only.

A3 + The UML meta language includes the OCL, which can be used to add further constraints on lan-
guage specifcations.

A4 + Since the UML languages are specified with a subset of the UML object modelling language, the
transformation into class diagrams needed for the development of modelling tools is very conven-
ient (if it is required at all).

A5 o The UML features powertypes. However, there is no precise specification of the concept (see 4.2).

A6 ++ The UML is the outstanding standard in conceptual modelling for software design.

Table 1: Evaluation of MOF and the UML infrastructure library respectively
(-: not satisfactory; o: accounted for; +: good; ++: very good)

Despite the shortcomings that the evaluation reveals, the UML language specifications cannot be
neglected for the specification of the MEMO meta modelling language. This is already implied by
requirement A6. Also, the development of modelling tools requires modelling languages for soft-

Meta Meta Models: Prevalent Approaches

13

ware design. It is very likely that the UML will be the language of choice for this purpose. There-
fore, the MEMO meta models need to be mapped to UML class diagrams. Furthermore, due to the
dissemination of UML tools, it can be reasonable to replace the MEMO-OML [Fran98c] with the
UML object modelling language. This would require integrating the corresponding UML concepts
with MEMO modelling languages.

3.2 Eclipse Foundation: Ecore

The Eclipse initiative supports the development of model editors by providing a software framework
that provides a generic architecture and generic functionality. Adapting the framework to develop a
specific model editor starts with specifying a meta model of the corresponding modelling language.
In order for the framework to interpret the meta model appropriately, it needs to be specified using
predefined concepts. For this purpose, Eclipse includes a conceptual model, named Ecore. While
Ecore is called a meta model1, a close look at it reveals two contrasting characteristics. On the one
hand, it shows features of a meta meta model, because it serves to describe meta models. On the
other hand, it is neither a meta nor a meta meta model, but an object model built as a conceptual
foundation for modelling tools. The classes that constitute the model include operations that support
introspection and transformation (see Figure 5). Furthermore, the classes include references to Java
language constructs. Abstract classes are depicted as grey boxes.

Analysing Ecore reveals a number of surprising if not odd features. For instance: The abstract class
ETypedElement includes the attributes lowerBound and upperBound, which serve to indi-
cate the minimum and maximum number of values that must or may represent a feature such as an
attribute. In addition to these, there are two other attributes, which are redundant: many indicates
whether there may be multiple values; required serves to specify whether at least one value is man-
datory. The attribute container of EReference is redundant, too: “A reference is a container if
it has an opposite that is a containment.”2 Other features focus on particular implementation level
aspects, which one would normally not include in a language specification, e.g. the attributes
containment or resolveProxies in EReference.

However, evaluating Ecore as a meta meta model (or even as a meta model) would not do justice
to its very purpose. Ecore is a model of an actual implementation. It guides users of the framework
in representing the modelling language they want to build an editor for. The framework includes a
plethora of generic functions to manipulate, navigate and transform graphical models that consist of
interconnected modelling elements. To adapt the framework to the requirements of a specific model-
ling editor, the corresponding modelling language has to be reconstructed as a net of associated
objects instantiated from the classes specified in Ecore. These objects are transformed into classes
that represent the meta types within the meta model of the modelling language to be supported by
the tool. The object states serve to define the semantics of these classes (see Figure 5). After that,
the concrete syntax has to be defined by assigning graphical representations to the language con-
cepts. The functionality of the resulting modelling tool can be further refined by selecting from op-
tions offered by the framework or by modifying/adding code. Table 2 shows the evaluation of
Ecore according to the requirements suggested in 2.1.

Due to the remarkable productivity gains promised by Eclipse and its still growing dissemination,
the specification of a meta meta modelling language recommends to account for Ecore – not as a

1 http://www.eclipse.org/modeling/emf/?project=emf (accessed on July 8th 2008)

2 http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/EReference.html#isContainment() (ac-
cessed on July 8th 2008)

The MEMO Meta Modelling Language – Revised Version

14

meta meta model or even a meta modelling language, but as a representation that is relevant with
respect to building modelling tools. Hence, there should be a transformation of the concepts speci-
fied in a meta meta model – as well as of the concepts in corresponding meta models – to Ecore.
Independent from that, one major concern remains: The documentation that is provided with Ecore
is restricted to the description of the Java classes. This shortcoming includes the unusual terminology.
Terms such as “instance class” or “meta object” are used without further explanation. This is defi-
nitely not satisfactory.

Figure 5: Ecore1

1 http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html (accessed on July

8th 2008)

Meta Meta Models: Prevalent Approaches

15

Req. Eval. Comment

F1 + Ecore is specified using a variant of UML class diagrams, the abstract syntax of which is formalized
to a great extent.

F2 o The language specification of the UML still includes some ambiguities. This is, e.g. the case for the
semantics of specialisation/generalisation. However, by mapping Ecore to a programming lan-
guage (Java) which is based on a formal specification (finally through the machine model it runs
on), the Ecore models feature a precise semantics. Unfortunately, Ecore lacks concepts required to
conveniently specify certain features of meta models.

F3 - The UML is certainly not a language that satisfies the demand for simplicity.

F4 - This criterion cannot be directly applied to Ecore since there is no explicit meta meta modelling
language. Instead, Ecore is specified as a UML class diagram. Nevertheless, the UML is clearly
more complex than Ecore itself.

U1 o Ecore is presented through a variant of UML class diagrams. Hence, its syntax and (ostensible)
semantics are easy to understand for those who are familiar with the UML.

U2 - An appropriate interpretation is jeopardized through the fact that on the one hand, Ecore is repre-
sented as a class diagram, on the other hand an instance of Ecore is meant to be interpreted as a
meta model. Hence, Ecore is an overloaded representation: It is located on the type (or class) level
and at the same time it shows features of a meta meta model.

U3 o Ecore uses the notation of UML class diagrams. This is for a good reason, because it is a UML
class diagram. However, since it should be interpreted as a meta meta model, too, this notation is
also confusing.

A1 o On the one hand, Ecore is not intended to specify a modelling language. Instead, it serves to
reconstruct a language specification for the purpose of developing a tool using an existing soft-
ware framework. On the other hand, the object model that serves as a language reconstruction
can be enhanced through additional specifications or code. Hene, Ecore provides a sufficient
foundation for specifying tools for enterprise modelling.

A2 o Since Ecore should not be regarded as a means to specify modelling languages, there should not
be any confusion. However, it could be mistaken as such – in interpretation that is fostered by
calling it a meta model.

A3 + Ecore can be supplemented by OCL statements.

A4 ++ This criterion marks a clear advantage of Ecore: As soon as a language is reconstructed using
Ecore, a major step to develop a corresponding editor is accomplished.

A5 - Ecore does include concepts that allow for such a differentiation. However, it could be modified
using UML powertypes.

A6 ++ The Eclipse initiative is a de facto standard for the development of modelling tools.

Table 2: Evaluation of Ecore

The MEMO Meta Modelling Language – Revised Version

16

4 Language Specification

The evaluation of the UML language specification concepts and of Ecore has shown that neither
one is satisfactory for the specification of modelling languages. Ecore is not a modelling language
at all but only a class diagram that can be interpreted as the representation of a meta model. The
UML infrastructure library or the MOF are not intended to serve especially as meta modelling lan-
guages. They are not introduced and used as pure meta meta models. Also, they do not feature a
specific graphical notation. The main purpose of the MOF is to provide a foundation for tool inter-
operability. For this reason, we decided to further use our own meta modelling language. How-
ever, some revisions are required. On the one hand, they relate to shortcomings of the previous
version. These include specification gaps (req. A5) and especially the lack of concepts that help
with expressing different levels of abstraction (req. F3). On the other hand, they are concerned with
the graphical notation. The revised version features a graphical notation that allows for clearly dis-
tinguishing meta models from models on the object level (req. U3).

All languages within MEMO are specified through this common meta language. It is specified
through a meta meta model. While an explicit meta meta model is not mandatory for specifying
meta models – as the bootstrapping approach used within the UML language architecture demon-
strates – we decided for a clear separation of different language levels. Such a separation allows
for defining a clearly more comprehensible language architecture. This is not only helpful for devel-
opers. We use MEMO for teaching purposes. The clear separation of language levels helps stu-
dents to identify and understand the different levels of abstraction to account for. The use of a meta
meta modelling language provides advantages over other approaches to language specification.
Firstly, it makes use of the same paradigm. That should help prospective language users – modellers
– with understanding the specification. Secondly, a meta model provides a good foundation for the
implementation of modelling tools, because it can be reconstructed as an object model in a
straightforward way. In order to foster the integration of the modelling languages and to support the
construction of integrated modelling languages, MEMO features a language architecture.

4.1 Basic Data Types or Domains

The meta modelling language includes a set of basic data types. Their semantics is not specified
any further. For this purpose, it is referred to the implementations of corresponding data types in
prevalent programming languages. Note that we do not need an operational semantics for specify-
ing meta models. Therefore, the data types can be regarded as domains that define sets of values.
Note that is it not possible to define a subset of a basic data type by specifying a range or an
enumeration of values. It is assumed that there is no need for specifying subsets on the meta meta
level. On the meta level it is possible to specify subsets which apply to the corresponding type
level. This is prepared for by specializing MetaDataType into MetaRegularType and further
on into MetaIntervalType. Types that are instances of MetaIntervalType allow for speci-
fying subsets through intervals. MetaInterval serves to define the structure for initializing inter-
vals. MetaEnumeration serves to instantiate a set of values of the same type that serves to spec-
ify attributes. MetaInterval and MetaEnumeration are specified in a formal pseudo-
language (see Figure 6) In addition to data types featured by most programming languages, the
types Date and Time are included. Furthermore, two more special types – to be instantiated from
MetaSpecialType – are introduced, MinCardinality and MaxCardinality. They are
defined as sets (see Figure 6). The basic data types or domains respectively used within the MEMO
meta modelling language are depicted in Figure 6. Note that the instantiation relationships serve

Language Specification

17

only the purpose to provide for using the abstraction MetaDataType (and its subtypes) within the
meta meta model. It does not express a specific meaning apart from that.

ݕݐ݈݅ܽ݊݅݀ݎܽܥ݊݅ܯ ൌ ሼ0ሽ ݎ݁݃݁ݐ݊ܫ݁ݒ݅ݐ݅ݏܲ

ݕݐ݈݅ܽ݊݅݀ݎܽܥݔܽܯ ൌ ሼᇱכ Ԣሽ ݎ݁݃݁ݐ݊ܫ݁ݒ݅ݐ݅ݏܲ

ݔ א ՜ ݎ݁݃݁ݐ݊ܫ݁ݒ݅ݐ݅ݏܲ ݔ ൏ Ԣ כ Ԣ

Figure 6: Basic data types used within the meta meta model

4.2 Intrinsic Features

On the one hand, specifying a meta model requires reflecting upon the ontological essence of a
term. On the other hand, it recommends taking into account that instances of a meta concept are
types. Sometimes, this results in the problem that the essence of a term includes features that do not
apply directly to the type level. Instead, they apply to the instances represented by a type. For ex-
ample: A language for modelling product types includes a meta type “PhysicalProduct”, which has
attributes like “name” or “type” and further optional features. Within a particular model, it is instan-
tiated to a certain product type, e.g. “TV Set”, which includes the instantiation of attributes from
corresponding meta types. While we know that every physical product has a weight, measure-
ments or a serial number, these materialized features do not apply to the corresponding product
type, because product type is an abstraction. Since a meta type may only define features that can
be instantiated to describe features of a type, it is not possible to express features that apply to the
instances of this type only. Assigning these features to every instance would not only ignore an ob-
vious abstraction, it would also result in redundancy. This problem is well known in conceptual
modelling. One approach to deal with it is the conception of a so called “power type” (also re-
ferred to as “powertype”). According to Odell ([Odel98], p. 28) “a power type is an object type
whose instances are subtypes of another object type.” This is a confusing definition that needs fur-
ther explanation. Figure 7 illustrates, how a powertype could be used to overcome the abstraction
conflict between type and instance features.

The MEMO Meta Modelling Language – Revised Version

18

Figure 7: Exemplary use of a power type – adapted from [Odel98]

The UML includes the concept of a powertype as well ([OMG05], p. 223, p. 335). Drawing
upon an example given by Odell, a power type is regarded as an additional classification
schema: “For example, the metaclass TreeSpecies might be a power type for the subclasses of Tree
that represent different species, such as AppleTree, BananaTree, and CherryTree.” ([OMG05],
p. 34). The specification of the current version of the UML provides a further example: “For exam-
ple, a Bank Account Type classifier could have a powertype association with a GeneralizationSet.
This GeneralizationSet could then associate with two Generalizations where the class (i.e., general
Classifier) Bank Account has two specific subclasses (i.e., Classifiers): Checking Account and Sav-
ings Account. Checking Account and Savings Account, then, are instances of the power type: Bank
Account Type. In other words, Checking Account and Savings Account are both: instances of Bank
Account Type, as well as subclasses of Bank Account.” ([OMG07], p. 57) While powertypes al-
low for coping with the problem outlined above, they come with a major disadvantage: There is no
concept in natural language that would correspond to a powertype. Instead, the concept of a
powertype is introduced only for providing a conceptual workaround. The concepts of a language
for conceptual modelling should correspond to concepts prospective language users are familiar
with. This is certainly not the case with powertypes. In [Scha08] the concept of “class template” is
presented. While it is similar to powertypes, it provides a more intuitive conception of the addi-
tional abstraction it allows for.

Similarly, Atkinson and Kühne criticize that the concept of a powertype seems artificial and thereby
increases the complexity of a model, while compromising its comprehensibility. Therefore, they
suggest a conception they call “deep instantiation” [AtKü07]. “Deep” refers to the possibility to
define that a concept is supposed to be instantiated “deeper” in an instantiation hierarchy. It is
based on a construct they call “clabject”: “… we refer to such constructs as clabjects (class and
object) and represent them using a combination of notational conventions from UML classes and
objects.” ([AtKü07], p. 10). A clabject can be specified using “fields” that either represent a meta
type attribute – which is supposed to be instantiated and initialized on the type level – or a feature
of instance of the type. These two meanings of a field are differentiated through so called “poten-
cies”. A potency indicates the number of instantiations of the corresponding meta types – and its
instances respectively – to be taken before the field itself my be instantiated. A potency of 1 applies
to the meta type attributes that are supposed to be instantiated on the type level. A potency of 2
means that the attribute applies only on one level further down the instantiation chain. A potency of
0 can be assigned to a (meta) type in order to mark it as abstract. The concept of a clabject is

Language Specification

19

illustrated in Figure 8. The potency values – printed in red – that are assigned to two fields of the
clabject “TV-Set” are supposed to be instantiated only on the instance level.

Figure 8: Example modelled with clabjects – according to [AtKü07]

Compared to powertypes, clabjects have the clear advantage that they generate less complexity. A
clabject corresponds to the common (overloaded) concept of a class in natural language. It forces
the modeller to explicitly clarify the level of abstraction intended with each feature of the class.
However, the concept of a clabject has some shortcomings, too. While differentiating “fields”
through “potencies” is a powerful instrument for expressing different levels of instantiation, it is still
difficult to understand because it is an artificial conception. Sometimes, not only attributes (or
“fields”) are subject of delayed instantiation, but also associations. The additional challenge gener-
ated by accounting for associations is illustrated in Figure 9. While one could associate (meta)
classes and define when their fields are supposed to be instantiated, the question remains how to
express multiplicities for the deeper layers. Consider the following example: We assume that every
class of “TV-Set” can be assigned one particular receiver type (instance of “Receiver”) only. This
would be expressed through corresponding multiplicities on the M2 layer. Further on we assume
that a particular TV (instance of instance of “TV-Set”) can be assigned one to many different particu-
lar receivers (instance of instance of “Receiver”). In this case, there would be need to specify these
multiplicities somehow. The concept of a clabject, as it is presented in [AtKü07], does not include a
solution to this problem. While potencies allow for expressing multi-level instantiation chains, it is
disputable whether potencies > 2 are required in modelling practice. Doing without potencies
would then reduce the complexity of a language.

Against this background, the concept of a clabject is slightly modified for its representation in the
MEMO meta meta model. Firstly, we do not use potencies. This decision is based on the assump-
tion that – at least for the purpose of specifying modelling languages – potencies > 2 are not
needed. Also, we do not speak of “fields”. Instead, a (meta) type may have (regular) attributes that
apply to its instances or “intrinsic attributes” that can be instantiated only with the instances of its
instances. Intrinsic attributes correspond to fields with a potency value of 2. Furthermore, our con-
cept includes associations: An association that gets effective only with the instances of the entity
types it connects is called an “intrinsic association”. An entity type that must not be instantiated di-
rectly, but only on the level below the one it is presented on, is called an “intrinsic type”. Note that
all attributes of an intrinsic type are intrinsic by default for the entire lifecycle of that type. Also, all
associations an intrinsic type is involved in must be intrinsic, too.

Figure 9 shows the representation of a modified example, where Receiver is modelled as an
associated type with regular attributes and an intrinsic attribute. Defining attributes of associated

The MEMO Meta Modelling Language – Revised Version

20

types as intrinsic has the following implications: The association is implicitly defined for each level
of abstraction that is covered by the attributes or intrinsic attributes respectively. In the example, this
means that the meta type Receiver is associated to the meta type TV-Set. Its instance is asso-
ciated to instances of TV-Set etc. In the example shown in Figure 9, intrinsic features (attributes,
associations or entity types) are marked by grey boxes.

Figure 9: Example modelled with intrinsic attributes, associations and types

4.3 The Meta Meta Model

The concepts used to specify the meta meta model as well as the graphical notation correspond to
the Entity Relationship Model (ERM) except for the additional specialisation relationship multiplicities
that can be assigned to attributes. Most concepts defined through the meta meta model are well
known from meta modelling languages. To support a clear distinction of the meta meta model from
models on other levels of abstraction (in correspondence to requirement U3), the concepts of the
meta meta model are represented as rectangles with a grey background. At the core of the meta
meta model is the abstraction MetaEntity. Its instances are meta types. It is associated with con-
cepts that are used to define the semantics of an instantiated meta type – such as MetaAttrib-
ute or MetaAssociationLink. In order to further specify the semantics of a meta model and
to comment on its concepts, the meta meta model includes the concepts Comment and Con-
straint. To allow for an unambiguous identification of comments and constraints, they can be
assigned identifiers. While a comment is written in natural language, a constraint should be speci-
fied in a formal language in order to foster precision and to allow for machine interpretation. The
OCL [OMG06c] is a good choice for this purpose, because it is supported by various tools. While
both Comment and Constraint apply to the meta type level, they are not instantiated into meta
types (or types) but into instances, which are assigned to a meta model. Hence, they are on a dif-
ferent level of abstraction as compared to other concepts of the meta meta model. This is expressed
through a white background, which corresponds to the representation of object or data models.

MetaAssociationLink serves the specification of associations between instances of MetaEn-
tity. Each instance of MetaAssociationLink can be specified through a name, a role, a
minimum cardinality and a maximum cardinality. Each instance is associated to exactly one further

Language Specification

21

instance of MetaAssociationLink. Both instances are associated to exactly one instance of
MetaEntity. Hence, only binary assocations are supported. The name that can be assigned to
an instance of MetaAssociationLink serves as a designator of the corresponding association.
Each one of the two names is supposed to be read in the direction towards the associated instance
of MetaAssociationLink. Usually, one designator will be sufficient. The attribute role allows
for assigning a role to an association end (see below). The attribute predecessor within
MetaAssociationLink serves the specification of modelling languages that support dynamic
abstractions. If predecessor is set to true, the corresponding concept is supposed to occur befo-
re the one it is linked to through the opposite instance of MetaAssociationLink. Note that
there is no specific semantics specified for it. It might seem appropriate to exclude cyclic associa-
tions. However, a cycle on the type level may make sense in case of multiple instances. Hence, this
type of association merely serves to make corresponding meta models more comprehensible.

The semantics of specialisation – which is restricted to single generalisation (single inheritance) –
corresponds to that of object-oriented programming languages: A MetaEntity instance ME1 that
is specialized from the MetaEntity instance ME2 inherits all features from ME2. However, dif-
ferent from logical subsumption – and the prevalent notion of specialisation in natural language –
instances of ME2 would not be instances of ME1. Instead, every instance of an instance of
MetaEntity is specified through exactly one (meta) type. This restriction is a tribute to the seman-
tics of specialisation in programming languages. Although this concept of specialisation is the
source of misinterpretations and problems (see e.g. [Fran03]), it was chosen to foster the transfor-
mation of meta models to object models used for developing corresponding modelling tools. The
attribute isSingleton of MetaEntity serves to express whether a MetaEntity may be in-
stantiated into one type only. Note that this constraint should be used only after thorough considera-
tions. Optionally, multiplicities can be assigned to attributes – represented through the attributes
minCard and maxCard of MetaAttribute. Within the meta meta model this is expressed
through the multiplicity [0..1]. Particular instances of MetaEntity or attributes or associations can
be specified as intrinsic. If an instance of MetaEntity is specified as intrinsic (attribute isIn-
trinsic = true), all its attributes during its entire lifecycle as well as all associations it is part of
are intrinsic, too. In the case of attributes, the boolean attribute isIntrinsic within MetaAt-
tribute serves to define whether an attribute is intrinsic. The Boolean attribute isIntrinsic
within MetaAssociationLink can be used to mark an association as intrinsic. The boolean
attribute derivable within MetaAttribute serves to specify whether the value of an attribute
may be deferred from other parts of a meta model. It reflects the fact that the level of detail used for
specifying a meta model may vary. For instance: A meta type such as “Organisational Unit” may
include the attribute “numberOfPositions”. The corresponding value may be assigned directly to the
type that was instantiated from “Organisational Unit”. It could, however, be calculated from the
position types and the corresponding numbers of instances – provided, these details were repre-
sented in the model. The attribute simulation within MetaAttribute allows for indicating
that an attribute is introduced for simulation purposes. This could be, for instance, the case with
attributes such as “averageAvailabilityPerDay” of a certain resource type. Sometimes, it may be
possible that the value of an attribute can be obtained from external sources, e.g. a database. For
example: A business process type could include the attribute “averageRevenues”, which would
serve to represent the average revenues generated by an instance of this type. If this value is avail-
able in an external information system, This can be expressed by setting the attribute derivable-
Extern within MetaAttribute to true.

The constraints that apply to the meta meta model are defined through OCL expressions in order to
foster the creation of a tool for editing meta models (see chapter 6). Figure 10 shows the MEMO
meta meta model. An instance of MetaModel is composed of any elements that are instantiated
from concrete subtypes of MetaConcept. It defines the namespace for all named entities. Note

The MEMO Meta Modelling Language – Revised Version

22

that it is not exactly a language concept. It can be instantiated into a particolar meta model, which
could be instantiated into its models. However, specific features of models, such as the times they
were created or modified, are not accounted for – e.g. through associating MetaModel with
MetaAttribute. Instead, this is regarded as a feature that is relevant for the development of
corresponding tools (see chapter 7). The concept of role is rather overloaded within conceptual
modelling (for a comprehensive analysis of the role concept in conceptual modelling see [Stei00],
especially p. 61 ff.). In the meta meta model it is accounted for only for one pragmatic reason:
Sometimes, it is not possible to unambiguously identify a particular end of an association, which
may be required to specify a constraint. In this case, it is possible to assign a role to an entity type
that forms the end of an association. A role can support the identification of an association end
only, if its name is unique within the associations that end at the corresponding instance of
MetaEntity (Constraint 10). The meta meta model itself includes two roles that are assigned to
MetaEntity.

Figure 10: The MEMO meta meta model

Constraints C1 and C3 express that identifiers of constraints and comments have to be unique.
Constraint C2 defines that names of instances of MetaEntity have to be unique, too. Constraint

Language Specification

23

C7 specifies that names of attributes (either instances of MetaCompAttribute, MetaInter-
valAttribute or MetaSimpleAttribute) have to be unique within the scope of the entity
type they are assigned to. Constraint C3 expresses that the minimum cardinality has to be less or
equal to the corresponding maximum cardinality. If an instance of MetaEntity is marked as in-
trinsic (through the attribute isIntrinsic), then all its attributes and all associations it is involved
in must be marked as intrinsic, too (constraint C6). Specialisations of instances of MetaEntity
must not be cyclic (constraint C8). Constraint C9 serves to avoid cyclic specifications, which could
result in non-terminating initialisation procedures: A MetaCompAttribute must not be specified
through the MetaEntity it is a feature of, nor through one of the MetaEntities, the associ-
ated MetaEntity is specialized from.1 An association is either intrinsic or not. Therefore, if the
attribute isIntrinsic within an instance of MetaAssociationLink is initialised as intrinsic,
the corresponding instance of MetaAssociationLink has to be intrinsic, too. Furthermore, the
associated entity types must be intrinsic or at least one of their respective attributes must be intrinsic.
This is expressed through constraint C5. Multiplicities are optional for attributes. If they are use, the
minimum cardinality must be smaller or equal the max cardinality (constraint C10). Constraint C11
specifies that the name of a role must be unique within the set of associations the corresponding
entity type is part of. Constraint 12 prevents two associated MetaAssociationLinks from both
having set their attributes predecessor to true at the same time. Constraint 13 expresses that the
two values of an interval that serve to specify an attribute must be of the same type (an instance of
IntervalType) and that the lower bound value must be smaller than the upper bound value.

4.4 The Graphical Notation

The concrete syntax or graphical notation of the meta modelling language is much like the one
already used for drawing the meta meta model itself. For the specification of textual designa-
tors/annotations we use a Bachus-Naur form (see Table 3). The non-terminal symbols are used
within the graphical illustration of the notation (see Figure 11 and Figure 12). Notice that we do
not bother with specifying a few basic non-terminal symbols – like LowercaseLetter, UppercaseLetter,
LineFeed etc. or String.

1 For a thorough analysis of OCL concepts to specify transitive closures see [Baar03].

The MEMO Meta Modelling Language – Revised Version

24

Ba
sic

 S
ym

bo
ls

&

C
om

po
sit

es

<digit> ::= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<positiveInteger> ::= {< digit >}

<infiniteNumber> ::= ’*’

<separator> ::= ’..’

<lowerString> ::= <LowercaseLetter> <String>

<upperString> ::= <UppercaseLetter> <String>

M
ul

tip
lic

ity
 <maxCardinality> ::= <PositiveInteger> | <infiniteNumber>

<minCardinality> ::= <PositiveInteger>

<multiplicity> ::= ’(’ <minCardinality> separator <maxCardinality> ’)’

N
am

es
 &

 D
es

ig
na

to
rs

<EntityName> ::= <upperString>

<AttributeName> ::= <lowerString>

<backwardArrow> ::= ’ ’

<forwardArrow> ::= ’ ’

<designator> ::= <lowerString>

<backwardDesignator> ::= <backwardArrow> <designator>

<forwardDesignator> ::= <designator> <forwardArrow>

<roleName> ::= <lowerString>

<constraintkey> ::= ’C’ <number>

<commentkey> ::= ’C’ <number>

Table 3: Representation of textual elements

To satisfy the demand for a clear visual distinction between meta models and models on the object
level (req. U3), instances of MetaEntity are represented in a different layout: Instead of a black
font on a white (or grey respectively) background, a white font on a black background is used.
Specialisation relationships are depicted using a common notation: an arrow that is directed to-
wards the generalized concept. In order to foster the distinction from UML class diagrams, the ar-
rowhead is filled in black. This is the same notation as the one used in the meta meta model al-
ready. Usually, one will not use more than one designator for an association. However, it is possi-
ble to assign one designator for each direction. Comments and constraints are represented through
specific boxes with attached identifiers. As an option, they can be linked to a selected model ele-
ment through a dotted line. They are expressed through strings. In the case of constraints it is rec-
ommended to use OCL expressions (see 4.3). Roles within associations are depicted as black,
rounded boxes with their names printed in white. Intrinsic features are a concept that is specific to
the MEMO meta modelling language. Their semantics is substantially different from ordinary model-
ling concepts. Therefore they need to be marked clearly. This is accomplished through a white “i”,
which is printed in a black box. The box is attached to the names of attributes and entity types or to
the designators of associations. If an association carries two designators, both should be marked
accordingly. In the case of intrinsic entities, the box has a white frame to make its shape visible. If
an association is not assigned a designator, the box is placed next to the edge that represents the
association. Abstract entity types are marked by printing their names in italic.

Language Specification

25

Figure 11: Elements of the graphical notation

Enterprise models require the use of various languages that need to be integrated. For this purpose,
the corresponding meta models have to be merged. In the case of complex meta models, this con-
stitutes a substantial challenge even for experienced language designers. In order to contribute to a
more transparent representation, the elements of a meta model can be marked by a symbol that
indicates the modelling language they belong to. Since the set of languages that can be specified
using the MEMO meta modelling language is not determined, it is not possible to define symbols in
advance. Instead, the language designers have to cater for that. Figure 12 shows possible options
for marking entity types that are part of the MEMO OrgML meta model.

<EntityName> <EntityName> <EntityName>

belongs to
language A

belongs to
language B

belongs to
languages A & B

Figure 12: Options to mark the elements of a meta model as belonging to a particular language

The MEMO Meta Modelling Language – Revised Version

26

4.5 Examples

The application of the MEMO meta modelling language allows for constructing a wide range of
meta models. The following examples serve to illustrate the use of both basic concepts that will be
required for most meta models as well as the use of more sophisticated or rarely required concepts.
The first example, depicted in Figure 13 shows a meta model of the ERM. This is certainly not a
typical application, since the MEMO meta modelling language is supposed to be used for the
specification of more complex meta models.

Figure 13: A meta model of the ERM

If modelling languages need to be integrated, the corresponding meta models will usually be
placed side by side in order to look for common concepts. The example in Figure 14 shows the
integration of the ERM with the DFD. The symbols used to distinguish both languages make use of
different colours only. The example illustrates the use of roles and constraints, too.

Language Specification

27

Figure 14: Differentiating two meta models through specific symbols

The use of intrinsic features is a more sophisticated option offered by the MEMO meta modelling
language. The example in Figure 15 shows all concepts that can be used to express intrinsic fea-
tures: intrinsic entity types, intrinsinc attributes and intrinsic associations. The example shows a sim-
plified application of the MEMO OrgML. In order to illustrate the meta model’s semantic, the type
and instance level are represented, too. The meta type Process is associated to the meta type
OrgUnit. To specify a particular organisation model, Process is instantiated into OrderMan-
agement and OrgUnit into MarketingDepartment. Both meta types contain intrinsic attrib-
utes that are not instantiated on the type level, but only on the instance level. The time a process is
started or terminated is not a feature of a type, but of a particular instance. This differentiation is not
that obvious for the instantiation of OrgUnit. This is because MarketingDepartment is de-
fined as singleton (indicated through the little box with an ‘S’ on top of the box that represents the
type). The type does not have a particular number of employees, nor was it founded at a certain
date. Instead, these features belong to the single instance of MarketingDepartment. Note that
MarketingDepartment does not have to be defined as singleton. If, for example, a multina-
tional corporation specifies a reference organisation structure for all its national subsidiaries, then
there would be multiple instances. To express that every organisational unit, no matter of what type
it is, is headed by one employee, the type Employee could be associated with OrgUnit. How-

The MEMO Meta Modelling Language – Revised Version

28

ever, Employee does not apply to the meta level. Therefore, it is specified as intrinsic. Note that
one should be very careful with using this option, because normally a meta model should not in-
clude types.

Figure 15: The use of intrinsic features

4.6 Preliminary Evaluation

The MEMO meta modelling language was designed to meet the requirements presented in 2.1.
Table 4 gives an overview of how well the requirements are satisfied. With respect to some criteria
(e.g. U1 or U3), such an assessment suggests to involve a larger number of language designers.
This has not happened yet.

Language Specification

29

Req. Eval. Comment

F1 + The abstract syntax of the MML is formalized.

F2 + The semantics of the MML is formalized to a large extent.

F3 + Although the MML includes a few specific concepts, such as intrinsic features, it is restricted to a
small set of concepts.

F4 + The MML does not make use of an explicit meta meta modelling language. However, the lan-
guage concepts used to specify it correspond to the ERM, which is enhanced by a few concepts
only – such as specialisation and abstract entity types.

U1 + Modelling experts should be familiar with most concepts offered by the MML, because they corre-
spond to the ERM. However, many prospective users will probably not know intrinsic features.

U2 + The MEMO language architecture provides a clear differentiation of levels of abstraction.

U3 + The specific graphical notation of the MML promotes a clear differentiation of meta models from
models on other levels of abstraction.

A1 o The MML was specifically designed for specifying languages for enterprise modelling. Its core
concepts have been successfully used for this purpose for several years. Nevertheless, it cannot be
excluded that in future times requirements will occur, the MML does not account for.

A2 + The MML’s sole purpose it the specification of meta models.

A3 + The MML makes use of the OCL, which can be applied to add further constraints on language
specifications.

A4 + The MML supports a clear mapping to object-oriented implementation languages. It also supports a
transformation of meta models into Ecore representations (see 6).

A5 + The MML features intrinsic features, the semantics of which is precisely defined. Intrinsic features
are also accounted for by specific notation elements.

A6 o The MML is clearly not a standard. However, its instances (meta models) can be transformed into
Ecore representations or other standard representations such as XMI – which, however, may cause
the loss of semantics.

Table 4: Evaluation of the MEMO meta modelling language

The MEMO Meta Modelling Language – Revised Version

30

5 The MEMO Language Architecture

MEMO consists of an extensible set of modelling languages. They are integrated through shared
concepts, which in turn are specified through the common meta modelling language. This construc-
tion allows for a coherent integration of new languages that supplement the existing set of lan-
guages. It provides a foundation for designing a corresponding set of integrated modelling tools,
too. Figure 16 shows the two levels of the language architecture and the corresponding models on
the type level: The common meta meta model specifies the abstract syntax and semantics of the
MEMO meta modelling language. It is instantiated into the meta models specify the abstract syntax
and semantics of the MEMO modelling languages, such as the Object Modelling Language (OML,
[Fran98c], [Fran98d]), the Organisation Modelling Language (OrgML), the Strategy Modelling
Language (SML) or the IT Modelling Language [Kirc08]. Further MEMO languages target modelling
of resources [Jung08] or various aspects of corporate knowledge management [Scha08]. Note that
it may be required to reconstruct the architecture occasionally. If, for instance, two languages share
a growing number of concepts, merging them into one language will improve the architecture’s
transparency. The bottom layer represents the models that are created by the modelling languages.

Figure 16: The MEMO language layers

In addition to providing for an integrated set of modelling languages, the architecture should also
account for the construction of a tool environment: While the meta models can be regarded as a
conceptual foundation for the design of a corresponding modelling tool, they cannot be used di-
rectly for this purpose. Instead, they need to be reconstructed as object models. These object mod-
els do not only represent the meta models, they need to be enhanced with tool specific features,
e.g. features that relate to versioning, to user management or to analysing and transforming models.
In case a tool is supposed to support collaborative modelling in a distributed setting, there is need
to include concepts that allow for model locking on various levels of detail. In order to provide a
conceptual foundation for a tool suite that allows for integrating various modelling editors, the ob-
ject models that correspond to particular meta models are merged into an integrated object model
(see Figure 17). The various editor of an integrated tool provide particular views on instances of this
object model.

The MEMO Language Architecture

31

Meta Meta Model

Meta Models

Object Models

Integrated
Object Model

MEMO Center

instance of

reconstruction of

integrates

conceptual
foundation of

MML

OML OrgML SML ITML

Figure 17: The MEMO language architecture and corresponding conceptual foundation for
modelling tools

The MEMO Meta Modelling Language – Revised Version

32

6 Outline of a Modelling Tool

The meta models specified through the MEMO MML can be used as a conceptual foundation for
the development of modelling tools. This requires reconstructing them as object models (see chapter
5). With respect to the remarkable gain in productivity provided by the GMF, we decided to use it
as a foundation for the development of MEMO Center. MEMO Center is modelling environment
that allows for creating various models, which are all integrated. For this reason, it provides cross-
model integrity checks. If, for instance, a business process model includes a reference to an IT re-
source with an ITML model, the tool would prevent deleting this resource or would – on explicit user
demand – perform a consistent delete operation in all related models. Furthermore, the tool allows
for transforming models of various kinds into other representations. For example, a business process
model that is integrated with an ITML model could be transformed into the schema of a workflow
management system – for the description of a prototype, see [Jung04]. The set of MEMO model-
ling languages is supposed to be extensible, which implies the development of further model edi-
tors. For this reason, the creation and integration of new model editors as well as the maintenance
of editors should be supported by an efficient tool. The tool – which is currently under construction –
is built using the GMF. For this purpose, the meta meta model was reconstructed as an instance of
Ecore.

Figure 18: The MEMO meta meta model as an Ecore instance

Outline of a Modelling Tool

33

Figure 18 shows a simplified version of the Ecore instance that was created with the GMF. Note
that this model is represented as an instance of Ecore, while its presentation within the model editor
gives the impression that it is a class diagram. However, its semantics is different from a class dia-
gram. The connectors between two instances of EClass – such as MetaEntity, MetaAt-
tribute etc. – do not represent associations as they are known from class diagrams. Instead,
they represent references as they are used on the implementation level. Therefore, each association
in the MEMO meta meta model is represented by two links in the Ecore instance. In addition to
that, further peculiarities of Ecore have to be accounted for. For this reason, creating a meta (meta)
model in the GMF is certainly more demanding (and confusing) than using a specialized editor –
like the MML editor that is illustrated in Figure 19.

The MEMO meta modelling editor allows for specifying MEMO meta models. As soon as a meta
model is finalized, the editor transforms it into a corresponding Ecore instance. This includes the
transformation of OCL statements. Subsequently, further specifications, such as the concrete syntax,
have to be added. This still requires remarkable expertise and effort. Nevertheless, the MEMO
meta modelling editor and the GMF, it is part of, facilitate the construction of additional model
editors to a great extent. Figure 19 illustrates through a simplified workflow how to develop an edi-
tor for a new MEMO modelling language.

Figure 19: Simplified workflow for developing additional model editors within MEMO Center

The MEMO Meta Modelling Language – Revised Version

34

7 Future Research

The new version of the MEMO MML reflects more than ten years of experience with designing
languages for enterprise modelling. Hence, it is promising a relatively mature foundation for specify-
ing meta models. Nevertheless, new requirements may evolve that suggest modifying the MML.
Hence, we regard the MML as an instrument, but also as an ongoing subject of our research. This
is the case with the language architecture, too. Focussing on new domains motivates the design of
new modelling languages. The corresponding meta models are then added to the language archi-
tecture. In order to keep the architecture consistent, commonalities of the languages need to be
analyzed from time to time. This may result in redesigning the language architecture by merging
languages.

MEMO is a method for enterprise modelling. A modelling method does not only consist of one or
more modelling languages, but also of one or more corresponding process models that guide the
application of the languages. A process model is comprised of the control flow of phases that need
to be completed. It also specifies the roles that are required for staffing a corresponding project. In
order to support the individual configuration of process models, a specific language for designing
process models can be applied. This can either be an adapted version of a business process mod-
elling language or a dedicated language for modelling project phases, such as the one specified
by Schauer as an extension of the MEMO language family ([Scha08], p. 245 f.). A meta model-
ling language like the MML and a language for modelling process models provide the foundation
for designing methods that satisfy particular requirements. However, for many prospective users of a
customized method designing it from scratch would be too much effort. Therefore, our future re-
search on method engineering will target approaches to reuse and adapt existing modelling lan-
guages and process models.

A method that is specified through meta models for the language(s) and process model(s) it in-
cludes, provides an excellent conceptual foundation for elaborate project management tools. A
process model – as an instance of a corresponding meta model – would represent a certain type of
managing projects. Its phases would be related to role types, types of models and – as a prescrip-
tive reference – to states of models that are supposed to be accomplished. A particular project
would then be represented through representations of models and a corresponding instance of the
selected process model. Such a representation could be used to generate the static structure of an
information system that would manage all aspects of a project that were specified in the method,
e.g. states (or versions) of models accomplished (or not) in any phase.

References

35

References

[AtKü07] Atkinson, C.; Kühne, T.: Reducing accidental complexity in domain models. In: Soft-
ware and Systems Modeling. Online First, June 2007

[Baar03] Baar, T.: The Definition of Transitive Closure with OCL – Limitations and Applications.
In: Broy, M.; Zamulin, A.V. (Eds.): Perspectives of System Informatics. Springer: Berlin,
Heidelberg etc. 2003, p. 358-365

[Fill05] Fill, H.-G.: UML Statechart Diagrams on the ADONIS Metamodeling Platform, Pro-
ceedings of the International Workshop on Graph-Based Tools (GraBaTs 2004), Elec-
tronic Notes in Theoretical Computer Science, Vol.127, No. 1, 2005, pp. 27-36

[Fran98a] Frank, U.: The MEMO Meta-Metamodel. Research Report No. 9, Institut für Wirt-
schaftsinformatik, Universität Koblenz-Landau 1998

[Fran98b] Frank, U.: Evaluating Modelling Languages: Relevant Issues, Epistemological Chal-
lenges and a Preliminary Research Framework. Research Report No. 15, Institut für
Wirtschaftsinformatik, Universität Koblenz-Landau 1998

[Fran98c] Frank, U.: The Memo Object Modelling Language (MEMO-OML), Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 10, Koblenz 1998

[Fran98d] Frank, U.: Applying the MEMO-OML: Guidelines and Examples. Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 11, Koblenz 1998

[Fran01] Frank, U.: Organising the Corporation: Research Perspectives, Concepts and
Diagrams. Research Report No. 25, Institut für Wirtschaftsinformatik, Universität Kob-
lenz-Landau 2001

[Fran03] Frank, U.: Ebenen der Abstraktion und ihre Abbildung auf konzeptionelle Modelle -
oder: Anmerkungen zur Semantik von Spezialisierungs- und Instanzierungsbeziehungen.
In: EMISA Forum, Band 23, Nr. 2, 2003, pp. 14-18

[FrLa03] Frank, U.; Laak, B. v..: Anforderungen an Sprachen zur Modellierung von Geschäfts-
prozessen. Research Report No. 34, Institut für Wirtschaftsinformatik, Universität Kob-
lenz-Landau 2003

[GoSt90] Goldstein, R.C.; Storey, V.: Some findings on the intuitiveness of entity-relationship
constructs. In: Lochovsky, F.H. (Ed.), Entity-Relationship Approach to Database Design
and Querying. Elsevier Science: Amsterdam 1990, pp. 9-23

[Hitc95] Hitchman, S.: Practitioner perceptions on the use of some semantic concepts in the
entity-relationship model. In European Journal of Information Systems, vol. 4, 1995,
pp. 31-40

[Jung07] Jung, J.: Entwurf einer Sprache für die Modellierung von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Logos: Berlin

[Jung04] Jung, J.: Mapping of Business Process Models to Workflow Schemata. An Example
Using MEMO-OrgML and XPDL. Arbeitsberichte des Instituts für Wirtschafts- und Ver-
waltungsinformatik, Universität Koblenz-Landau, Nr. 47, 2004

[JuKü+00] Junginger, S.; Kühn, H.; Strobl, R.; Karagiannis, D.: Ein Geschäftsprozessmanagement-
Werkzeug der nächsten Generation - ADONIS: Konzeption und Anwendungen. In:
Wirtschaftsinformatik, vol. 42, no. 5, 2000, pp. 392-401

The MEMO Meta Modelling Language – Revised Version

36

[KeLy+96] Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment, in Proceedings of the 8th International Conference
on Advanced Information Systems Engineering, CAiSE'96, Heraklion, Crete, Greece,
May 1996, ed. by Constantopoulos et al., Lecture Notes in Computer Science No.
1080, Springer: Heidelberg 1996, pp. 1-21

[Kirc08] Kirchner, L.: Eine Methode zur Unterstützung des IT-Managements im Rahmen der Un-
ternehmensmodellierung. Logos Verlag: Berlin 2008

[Lore96] Lorenz, K: Sprache. In: Enzyklopädie Philosophie und Wissenschaftstheorie. Ed. by J.
Mittelstraß. Vol. 4, Metzler: Stuttgart, Weimar 1996, pp. 49-53

[MaPa+92] Mayer, R.J.; Painter, M.K.; deWitte, P.S.: IDEF Family of Methods for Concurrent Engi-
neering and Business Re-Engineering Applications. Knowledge Based Systems: Col-
lege Station 1992

[Odel98] Odell, J.: Power Types. In: Odell, J. (Ed.): Advanced Object-Oriented Analysis and
Design Using UML. , Cambridge University Press: Cambridge 1998, pp. 23-33 (re-
vised version of: Odell, J.: Power Types. In: Journal of Object-Oriented Programming,
Vol. 7, No. 2, 1994, pp. 8-12

[OpHe99] Opdahl, A .L.; Henderson-Sellers, B.: Evaluating and Improving OO Modelling Lan-
guages Using the BWW-Model. In Proceedings of the Information Systems Foundations
Workshop (Ontology, Semiotics and Practice), (digital publication), Sydney 1999

[OMG05] OMG: Unified Modeling Language Specification. Version 1.4.2, 2005

[OMG06a] OMG: Meta Object Facility (MOF) Core Specification. Version 2.0, 2006

[OMG06b] OMG: Unified Modeling Language: Infrastructure. Version 2.1.1, 2006

[OMG06c] OMG: Object Constraint Language. OMG Available Specification. Version 2.0,
2006

[OMG07] OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Version
2.1.2, 2007

[Scha08] Schauer, H.: Unternehmensmodellierung für das Wissensmanagement. Eine multi-
perspektivische Methode zur ganzheitlichen Analyse und Planung. Dissertation, Univer-
sity Duisburg-Essen 2008

[SüEb97] Süttenbach, R.; Ebert, J.: A Booch Metamodel. Fachberichte Informatik, 5/97, Univer-
sität Koblenz-Landau 1997

[Stei00] Steimann, F.: Formale Modellierung mit Rollen. Habilitationsschrift. Universität Hannov-
er, Hannover 2000

[Webe97] Weber, R.: Ontological Foundations of Information Systems. Coopers&Lybrand: Mel-
bourne 1997

Previously published ICB - Research Reports

2008

No 23 (Januar 2008)
Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing –
Outline of an Approach Supporting Production Planning”

No 22 (Januar 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second
International Workshop on Variability Modelling of Software-intensive Systems"

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-
management-Kreislauf"

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the
‚Relevance Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik:
Schritte der Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An
Analysis of Model Curricula”

No 16 (May 2007)
Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and
Mainframe Capacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals –
Analyse und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden
für Softwarearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext
serviceorientierter Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an
Application to Markovian Process Algebras”

Previously published ICB - Research Reports
No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des
IT-Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender
Lehrbücher der Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung
des wissenschaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein
Forschungsprogramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information
Systems Research”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein
Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part III –
Results Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part II –
Results Information Systems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part I –
Research Objectives and Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -
methoden in Wirtschaftsinformatik und Information Systems“

�������	
	�	���������	�����
������������
�����������	
�����	��������������	����	�	�����������������
�����
��	���	���������

����	����
���
������
�������	�����
������������	
�����	���������������������	
�� ��������	!�����������������������

�"������
������������#���	
��$

%������
�����	
��"
�
	������	���&�'$������������	
���	������� ���(�)*+,-.//,��0�
�	�
���(�)*++-1),)��2��
���

3��������4���

���������������������������
������	
�����	�������0����	
������2����	
��
 ��������	

������������������	
 ������� ��������	���
�����5�2����	
���3�������

�����������������������
0��������	��6�
�	
�������������	
�� ��������	

���������� ��!
����
7������'
�
	��������	
������	���

����������"��!	
#��
������	
�����	����������	��������
����
��

����������$�����#
������	
�����	����������	����
��� ����
��

����������%��&���	
#�
����
�
��	
������	��������	���

����������'��(��
������	
�����	����������	����
��������
��	
�����	���

����������)�� �����
�-���
����������-��	�����������
�

����������*��%+��������������
���	���� ����
��

���������� ������
��	��������	�������
����
��

����������,���!��'������
����	���(�	��8
�����������

�������������"
��	��
0��"��
"������	
��

����������'��$���
7�	�� ��������	����	��������9��������3�������	�	
�

����������"��-�����#	
���	
	�	����0����	
�����������	�
���������	
�� �������	

����3����������
��

�-6����
����9�������� ��������	���8
��- ��������	�
�
����	
�����	
�
�
�����	���
�����

������	
�����	��������2����	
���3������������
����
��	���
�������7�	��&������
��

�-���
�������-0��������	���-4"������	

7������'
�
	��������	
������	���

0������ ��������	����-����
	��	����

��	����
��� ����
������	����
�������
��	
����	����	
��
��� ��������	��9�������� ��������	

7
�	�
'�	������	�������	�����������	������&

0�������7�	��������	����	
�� ��������	�����	���
3���	
���
�� ��������	

�-���
���������������	
�� ��������	��-��	�����������
�5
�-:��	�����:
�	���� ��8�	����������� '
������������2��
��-
 ��8�	
��

0�����������"����	
��������	������������
��	
�
���	����� ����
��������
����	
�

3�;�
�����	�����
����
������	�����<���
	������������
��	����-����
	��	�������"����	
�����2��52���������-
������	�

����	���(�	��8
�����������

0��"��
"������	
����=�
;�
	�������	
������	�	
"��=���
��	���������("�����	����	
���������
������	�#	-�����
����	
��

7�	�� ��������	����	
�
�
�����	���
���������	��������
����
���
��	����	������������
��

�����	�
������
�����0������������"�	
�� ��������	�
������	
�� ��������	������
����������

	DocumentServlet-1.537.424.097.766
	ICB-Report_No24
	ICB-Report_No24.pdf
	SeitenVorne.pdf
	SeitenHinten.pdf

	Seiten aus ICB-Report_MEMO_MetaMeta-7

