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Abstract

This expert voice paper presents a comprehensive rationale of multi-level modeling. It aims not only at a systematic assessment
of its prospects, but also at encouraging applications of multi-level modeling in business information systems and at providing
amotivation for future research. The assessment is developed from a comparison of multi-level modeling with object-oriented,
general-purpose modeling languages (GPMLs) and domain-specific modeling languages (DSMLs). To foster a differentiated
evaluation, we propose a multi-perspective framework that accounts, among others, for essential design conflicts, different
types of users, as well as economic aspects. Besides the assessment of the additional abstraction offered by multi-level
modeling, the evaluation also identifies specific drawbacks and remaining challenges. Based on the results of the comparative
assessment, in order to foster the adoption and further development of multi-level modeling, we discuss the prospects of
supplementing multi-level modeling languages with multi-level programming languages and suggest possible dissemination
strategies customized for different groups of users. The paper concludes with an outline of future research.

Keywords Essential design conflicts - Multi-perspective evaluation framework - Multi-level programming languages -
Integration of models and code - Multi-level dissemination strategies

1 Introduction

Introduced about 20 years ago [8], with ancestors that go
back even further, cf. [56,63,91,95], multi-level modeling
has not yet made it to the research mainstream, neither in
software engineering nor in conceptual modeling. Neverthe-
less, it has been persistent, and there are signs of an increased
awareness of multi-level modeling, albeit to a modest degree
only. For instance, in recent years, the MULTI workshop
has developed into an established workshop series within the
Models conference.! A theme issue [10] and a special issue

! http://www.modelsconference.org.
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[102] underline the attractiveness of the topic. Also, a recent
Dagstuhl seminar [2] confirms the relevance and topicality
of multi-level modeling. Last but not least, the small inter-
national community of dedicated researchers is still excited
about the prospects of multi-level modeling.

From an external perspective, the research field is likely
to give a confusing picture: a seemingly marginal topic,
but persistent; enthusiastic researchers, but hardly any dis-
pute with followers of traditional conceptual modeling
approaches. These traditional approaches are limited to mod-
els, the classes of which are all on the same classification
level. Therefore, one could refer to them as “single-level”
approaches. At the same time, corresponding language archi-
tectures, such as, e.g., the metaobject facility (MOF) [92], are
also often used for the creation of models on M1 and on MO,
the former being usually the main focus. That would justify
to speak of “two-level” approaches, which is often the case in
publications on multi-level modeling, cf. e.g., [9]. In order to
avoid confusion, we shall use the term “traditional approach”
whenever we refer to modeling within a language architec-
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ture that allows only for models on one specific classification
level.

For those who work in the field of multi-level modeling,
but even more so for others who wonder whether they should
join in, the question emerges as to whether multi-level mod-
eling actually offers convincing benefits that make a clear
difference relative to traditional approaches. Is it comparable
to one of those exotic programming languages that are wor-
shiped by a small group of devotees, who are not interested
in spending much time with evangelizing users of other lan-
guages? Orisitrather a sleeping giant, the power of which has
been underrated for a long time? It is remarkable, though, that
there has hardly been any dispute with followers of traditional
approaches to conceptual modeling. Instead, the multi-level
modeling community lives in a state of peaceful co-existence
with followers of traditional approaches. While this situation
may be seen as comforting by some, we regard it as ambiva-
lent. On the one hand, an intensive dispute with researchers of
traditional approaches to conceptual modeling may be seen as
stressful and daunting by some, and might have contributed
to an erosion of the community. On the other hand, a field of
research can only flourish if it is in competition with alter-
native approaches. This situation constitutes an opportunity
and also, as we believe, the need for action. As far as we can
see, the users and followers of traditional approaches do not
form a hostile environment. Most members of the multi-level
modeling community are respected members of other com-
munities, too. These are favorable conditions for convincing
others of the prospects of multi-level modeling. At the same
time, it is essential for the future of multi-level modeling to
develop a comprehensible rationale in order to promote not
only interest in multi-level modeling, but also a much needed
debate on its potential and specific challenges.

Within the multi-level modeling community, there seems
to be a wide consensus about the pivotal advantage offered
by multi-level models, that is, the reduction of “accidental
complexity,” cf. [9]. Accidental complexity emerges, if the
analysis of a domain leads to abstractions that cannot be
expressed by the modeling language in use. In other words,
we have relevant knowledge about a domain we want to
model, but the modeling language does not allow for express-
ing it. The following example illustrates this problem. It
seems to be straightforward to assume that a printer model is
a printer, which is a peripheral device. Furthermore, a par-
ticular printer is of a certain printer model. Figure 1 shows
that representing this fairly simple conceptualization with a
traditional object model is problematic—mainly because the
predicate is a is overloaded. In part, it represents special-
ization, e.g., with respect to the attribute resolution in
Printer that is added to the list of inherited attributes. At
the same time, output is instantiated, which indicates an
instantiation relationship.

@ Springer

PeripheralDevice

How to express
that, e.g.,
partSalesPrice is to
be instantiated only
on M0?

output: Boolean
input: Boolean
salesPrice: Money
partSalesPrice: Money
serialNo: String

noOfModels() : Integer

)
: How to run the
Printer operation
salesPrice: Money noOfModels in a
partSalesPrice: Money (meta) class?

serialNo: String
pagePerMinute: Integer
resolution: Integer

Where to store
values for input

and output ..
?
CPL-844 ..and for
partSalesPrice: Money resolution and
serialNo: String pagePerMinute?

Fig. 1 Illustration of limitations of traditional object-oriented lan-
guages

The lack of abstraction traditional approaches like the
UML suffer from, leads to the need to overload one classifi-
cation level with multiple levels of abstraction, which leads
to conceptual redundancy and, hence, a threat to integrity.
In addition, such workarounds are likely to “obscure the
meaning of a domain model [...],” which makes it difficult
to distinguish between “accurate reflections of the problem
domain [...] and just accidental properties of the particular
workaround” [9, p. 346]. The additional abstraction enabled
by multi-level modeling is suited to relax this kind of avoid-
able model complexity in many cases (see the corresponding
examples in Fig. 2).

A considerable number of publications demonstrated clear
advantages of applying multi-level modeling to particular use
cases, e.g., [18,27,31,32,44,60,65,67,90,98,100], and sup-
ported Atkinson’s and Kiihne’s claim that “there is a strong
demand for some kind of technology supporting ontological
multi-level modeling” [9, p. 357]. However, while various
approaches to multi-level modeling are available, it seems
still to be the case what the authors stated 12 years ago: “[...]
the software modeling community has not taken advantage
of them yet” [9, p. 357].

In order to contribute to changing this state of affairs,
this paper aims at presenting a comprehensive rationale of
prospects and challenges of multi-level modeling, that s, pro-
viding a convincing justification of its advantages over other
modeling approaches, as well as identifying open issues that
still need to be addressed. We do not intend to show that
multi-level modeling is a silver bullet. Instead, the intended
rationale must also take into account the conditions under
which multi-level modeling is advantageous. While our main
focusis on modeling languages, we also account for program-
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ming languages. Therefore, we also use the more general
terms “multi-level language” or “multi-level language archi-
tecture” where they seem more appropriate. Our research
reported on in this paper is therefore driven by the following
questions:

— What perspectives should be accounted for when com-
paratively evaluating various modeling approaches?

— What are the specific benefits and specific challenges of
multi-level modeling compared to other approaches?

— What is needed in order to support the further develop-
ment and adoption of multi-level modeling?

To reach our objectives, firstly, we present a multi-
perspective assessment framework, which is subsequently
used to compare multi-level modeling to traditional mod-
eling approaches. By accounting for multiple perspectives
in our assessment, we move beyond typical engineering-
oriented justifications, focusing equally on the perspective
of (potential) users (e.g., in terms of a cognitive fit with nat-
ural language use), principal system design conflicts, and
an economic perspective. With our multi-perspective assess-
ment, we thus point out the various prospects brought about
by multi-level modeling. Nevertheless, multi-level modeling
also comes with various challenges that include the need for
attractive use cases and reaching a critical mass of researchers
and users. Against this background, we discuss the benefits of
a common representation of multi-level modeling languages
and multi-level programming languages at run-time and out-
line prototypical dissemination strategies for different user
groups.

Developing a convincing justification for languages or
linguistic artifacts is confronted with serious methodolog-
ical challenges. In recent years, empirical studies, which are
of pivotal relevance in the natural sciences, have become
increasingly important in software engineering and business
information systems alike. Empirical studies can be a power-
ful instrument of scientific inquiry. That, however, requires
a theory that is suited to explain the existence or variation
of certain phenomena. In other words, it should allow for
prediction. To serve that purpose, relevant properties of the
observed phenomena have to be operationalized in order to
allow for measurement. Hypotheses that are deduced from a
theory are then tested against the data that resulted from the
measurement. In the strict sense of falsification [96], a theory
has to be refuted, if a hypotheses derived from it failed. Usu-
ally, the verdict is not that rigorous, especially in psychology
and the social sciences. Nevertheless, empirical tests do not
make sense without the existence of a theory. Take, for exam-
ple, a construct like “ease of use” that is operationalized by a
few hypotheses, which are then tested by having two groups
of students work with two different tools. Without a theory,
the result may at best be useful for tool vendors to improve

their products, but it could hardly be generalized and applied
to other tools. To the best of our knowledge, there is no theory
in the context of applying conceptual modeling that is power-
ful enough to explain or even predict the outcome of using a
certain modeling approach. Therefore, empirical studies that
focus on behavioral aspects of developing and using concep-
tual models are not an option for our purpose. Note that this
is not at all meant to exclude empirical aspects of modeling
from our investigation. On the contrary, it is definitely not
sufficient to evaluate an approach to conceptual modeling
through a formal analysis only.

Against this background, we decided for the following
configuration of our research approach. To enable a thorough
comparison, we introduce a multi-perspective evaluation
framework. It accounts, among others, for abstraction con-
cepts, essential design conflicts, the user perspective, and
economic aspects. To account for design and engineering
views we justify our assessment with presuppositions that are
likely consensual, meaning presuppositions that are largely
agreed upon in discourse among a group of scientists. To
assess the cognitive, social, and economic aspects of differ-
ent modeling approaches, we draw on a set of established
theoretical lenses from different disciplinary backgrounds,
ranging from cognitive linguistics to learning theories.

The structure of the paper is as follows. First, the subject
of our investigation, multi-level modeling, is defined within
the broader context of conceptual modeling. Then, we intro-
duce a multi-perspective evaluation framework and use it to
discuss different approaches. Subsequently, we point out that
programming languages should be accounted for in order to
exploit the full potential of multi-level modeling. Since the
further development of multi-level modeling does not only
depend on coping with remaining research challenges, next
we outline possible paths of a dissemination strategy.

The paper concludes with a final discussion and an out-
look on future research. Note that the paper targets both,
the multi-level modeling community, and researchers not
yet familiar with the characteristics of multi-level modeling
and its promises. To address the latter, the following sec-
tion presents an overview of essential concepts of multi-level
modeling languages and explains why it can be regarded as
a new paradigm.

2 The subject: essential characteristics and
possible variations

The field of multi-level modeling comprises various
approaches which are usually dedicated to the development
of languages and tools, cf. e.g., [9,28,53,61,64,81,82,85].
Since we focus on multi-level modeling in general, notion
specific approaches, we first need to clarify the subject of our
investigation. On the one hand, this requires the identification
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of common properties that can be regarded as characteristic
for the field. On the other hand, it recommends accounting
for the relevant context and the purposes of using multi-level
modeling, because these factors are of pivotal relevance for
the evaluation of languages and tools.

2.1 Core concepts

Multi-level modeling is a special kind of conceptual mod-
eling. The term multi-level modeling covers any modeling
approach that aims to provide systematic support for repre-
senting multiple classification levels within one model [8].
There are two families of multi-level modeling languages.
Most languages fall in the object-oriented family, in the
sense that they are based on notions of class and object,
which are characteristic for object-oriented languages, e.g.,
[9,28,53,82,106]. The second family of multi-level languages
is set- or logic-based, with some rather focusing on data or
knowledge bases, e.g., [63,85,86,88], and others aiming at
multi-level representations of ontologies [40]. While both
families have much in common, they differ in at least one
important aspect. While object-oriented approaches feature
a concept of object, where an object is of one and only
one class, logic-based approaches allow an object to be of
many classes. Note that while the UML metamodel allows
for an object to be of more than one class, object-oriented
programming languages do not. Therefore, the prevalent
interpretation of UML object models is that an object is
of one class only. We do not entirely exclude logic-based
approaches, but with respect to specific semantic aspects and
the transformation into code, we focus on object-oriented
approaches.

Within this focus, based on the analysis of publications,
among others [9,28,53,61,64,81,82,85], corresponding dis-
cussions at MULTI 2017 and the Dagstuhl seminar on
multi-level modeling in 2017, we identified core properties
of multi-level modeling approaches that are described below.
However, please note that the concepts which characterize
multi-level models are similar to, but clearly different from
corresponding concepts used in traditional object-oriented
modeling. Therefore, applying traditional terminology to
multi-level models may be inappropriate, and even mis-
leading. Also, so far there is no unified terminology for
multi-level modeling, cf. Sect. 6. Therefore, in order to pre-
vent misunderstanding, we introduce the terms that we use
in this paper together with presenting the core characteristics
of multi-level modeling. The following description is sup-
plemented with references to an example diagram created
with the Flexible Meta Modeling and Execution Language
(FMML*) [49,53] (see Fig. 8). Choosing the FMML* for
this purpose is mainly related to the fact that it is suited to
illustrate the core concepts and that it builds the foundation
for tools we will use later to demonstrate the integration of
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modeling and coding. Note that the diagram also shows addi-
tional concepts (see Sect. 2.2). The corresponding labels are
printed in italics.

An arbitrary number of levels Different from the metaobject
facility (MOF), the representation of classes is not limited
by a maximum number of classification levels. Note that the
term “classification” does not have exactly the same mean-
ing as in traditional object-oriented approaches. This is the
case for the associated term “level” as well, cf. [72]. There-
fore, we use the following terms. Through “concretization,”
in contrast to “instantiation,” a “concretion,” in contrast to
“instance,” of a class C on level m is created, which is a
class on level m — 1. Concretization requires that at least one
feature (attribute, as well as, in some cases, operation and
association) of a class is instantiated in the concretized class.
Other properties will usually be “inherited” (see “deferred
instantiation”). If all properties of a class are immediately
instantiated, concretization is, at first, equivalent to instan-
tiation. However, through adding further properties to the
concretized class, it can be different from instantiation in that
case, too. In the opposite direction, we speak of “intrinsic
classification” in contrast to “classification” and “intrinsi-
cally classified” in contrast to “classified.” Note that the
traditional terms are still needed for those cases where they
apply: Both instantiation and classification in a strict sense
are possible in multi-level modeling, too. We refer to the
tree of classes that are concretized from a class and its con-
cretizations as a “concretization subtree.” The excerpt of a
multi-level model shown in Fig. 8 includes objects on five dif-
ferent levels. As the example illustrates, higher-level classes
allow for the specification of knowledge that applies to a
wide range of more specific classes—and that cannot be rep-
resented through generalization alone (see also the example
in Fig. 1).

Every class is characterized by an explicit or implicit level
There are different approaches in use to define explicit lev-
els. Some approaches assign a level directly to a class [8,53].
While levels are usually expressed by numbers (either start-
ing at the bottom or at the top), they may also be represented
by terms that are supposed to clearly symbolize the intended
level of classification [85] (cf. diagram in Fig. 2). Atkinson
and Kiihne distinguish between “ontological” and “linguis-
tic” levels of classes [9]. While we regard a discussion of this
distinction as important, we will not go into this discussion,
because it goes beyond the core characteristics of multi-level
modeling. The example diagram in Fig. 2 that was created
with the FMML* [53] features explicit definitions of levels.
Levels are indicated by the background color of the field used
for displaying the name of a class and a number in the same
field. Other approaches favor an implicit definition of classi-
fication levels, cf. [11,61]. In that case, a classification level

2 Adopted from [85,86], however, not with exactly the same meaning.
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Fig.2 Multi-level concepts presented with different notations

can be determined dynamically depending on the number
of instantiation steps that can be performed until level O is
reached (cf. clabject diagram in Fig. 2). Like in traditional
object-oriented models, the level of an object that cannot be
further instantiated is 0. Classes on any level n can be intrin-
sically classified to a class on level n + 1.

Every class is an object Itis essential for classes in multi-level
models to allow for having a state: Every class is instantiated
(in the terminology proposed in this paper: “concretized”)
from a metaclass. That requires the instantiation of at least
one property defined with the metaclass, and hence, a state of
the instantiated class. Supplementing classes with the ability
to execute operations is definitely useful as the example of
the operation noOfModels in Fig. § illustrates. It is defined
in the class PeripheralDevice and executed in the class
Printer where it produces the result that corresponds to
the number of its instances. Note that there are multi-level
modeling languages that do not support the execution of oper-
ations.

Deferred instantiation The instantiation of an attribute
defined with a class on a level m > 1 can be deferred to
alevel I < m — 1. This serves the expression of knowledge

Clabjects

M-Objects

on a higher level n, even though it may be concretized only on
levels below n — 1. For this purpose, Atkinson and Kiihne [8]
propose the use of a concept called “potency” which defines
the number of possible instantiation steps of a class or an
attribute. In turn, the FMML?* uses the term “intrinsic fea-
ture” to mark attributes the instantiation of which should
be deferred, and an explicit instantiation level. Note that
“intrinsic” should not be confused with its use in work on
foundational ontologies, where it basically serves the distinc-
tion of attributes and associations (cf. [59,107]). “M-Objects”
[85] use a similar approach, only that levels are not marked
by numbers, but by terms. In this paper, we use the terms
“intrinsic feature” and “instantiation level” as defined in [53].

The example in Fig. 1 served us to illustrate limitations
of the traditional paradigm to express existing knowledge
appropriately. In contrast, multi-level modeling enables to
clearly express the intended meaning, which is illustrated by
the diagrams shown in Fig. 2. The diagrams represent three
widely equivalent multi-level models that were created with
three different languages, namely the FMMLX, clabjects, and
M-Objects. The class PeripheralDevice, which is an
object at the same time, is located on level 3. While one of its
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attributes (output) is instantiated within Printer, that
is, on the level below, the instantiation of its other attributes
is deferred to L1 and LO, respectively. Furthermore, it is pos-
sible to extend a class with further attributes, which is the
case for the class Printer. Note that we use the FMML*
notation for the remaining figures in the paper.

While associations are important in multi-level model-
ing, too, there is no unified conception of associations, which
would be part of the common core. Some approaches allow
for associations between classes on different classification
levels, e.g., [49,53], while others restrict the use of associa-
tions to classes of the same level only, cf. [4,79].

2.2 Additional concepts

There are various additional concepts that focus on specific
aspects. The following extensions are not part of the com-
mon conception of multi-level modeling. Nevertheless, the
additional concepts deserve a separate treatment since they
directly relate to the idea of distinguishing multiple levels.
More importantly, in our experience these additional con-
cepts are often required for multi-level models of domains
that are characterized by a distinct conceptual diversity. A
more elaborate description of these and other extensions is
given in [49].

Deferred instantiation of associations Some approaches
allow for deferred instantiation of associations. While this
corresponds to deferred instantiation of attributes, it is dif-
ferent from it. This is because the classes the association
applies to may not be known at the level where the association
is specified. This lack of knowledge may include multiplici-
ties. The diagram in Fig. 8 includes the intrinsic association
compatible, because it is already known at a higher level
of (intrinsic) classification that peripheral devices and com-
puters may be compatible. However, the association must not
be instantiated before level 1.

Deferred instantiation of operations Similarly to attributes,
the instantiation of operations that were defined with a class
on level m can be deferred to alevel lower than m — 1. Figure 8
shows a corresponding example.

Contingent level classes There is a good reason for speci-
fying the level of a class. With respect to the semantics of
a class, it makes a clear difference whether it is meant as a
class on level 1 or on a higher level. In natural language, we
can cope with the ambiguity of terms like “Product,” which
can be used to refer to a particular product, a type of product
or even to the set of all kinds of product types. In conceptual
modeling, it is preferable to avoid ambiguity. Nevertheless,
there are cases were the level of a class is not invariant across
all possible use cases. In one context, it may be n, in another
context is may be m, with m # n. Sometimes, the design
of two multi-level hierarchies of similar objects results in a
top-level metaclass C that makes sense for both hierarchies.
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But it may turn out that one hierarchy would require a level
from C that is different from that required by the other hier-
archy. There are basically two ways to cope with this kind
of diversity. One could split a model in two or more models,
where the class is on a specific level in each model. Or one
could define the level of the class as contingent and, hence,
allow for it being instantiated into classes on different levels.
The latter corresponds to “skipping the instantiation” at the
intermediate metalevels, as suggested by [30]. The introduc-
tion of contingent level classes creates a challenge to model
integrity, because it would allow for two contradictory propo-
sitions: Class c is on level m (because one of its concretions
is on level m — 1) and class c is not on level m (because
another concretions is on a different level) . One approach
to cope with this problem is to refer to modal logic (for an
overview, cf. [55]). Then, every specific level of a contingent
level class would be part of one possible world [43] (see also
Sect. 3.1.1).

Contingent instantiation levels of attributes The fact that a
contingent level class should allow for being concretized into
classes on different levels may have an impact on the deferred
instantiation of its attributes. If, for example, the contingent
level class “Product” can be concretized into “Automobile”
on level 3 or, within another context with a less elaborate
terminology, into “UsedCar” on level 1. In the first case, an
attribute like “price” would be instantiated on level 1, in the
second case, on level 0.

2.3 The multi-faceted conception of multi-level
modeling

Traditional approaches to conceptual modeling are charac-
terized by a clear distinction of executable objects (usually on
MO0), models, and modeling languages, which is most promi-
nently reflected in the language architecture proposed by the
MOF. With multi-level modeling, this distinction is blurred.
A model that features multiple levels of classification may
include elements that correspond to traditional model ele-
ments on M1, as well as elements on (meta) language levels
such as M2, M3, and above. While it is conceivable to hide
upper levels in order to reduce complexity for certain groups
of users (cf. Sect. 5), a comprehensive representation of a
multi-level model offers clear benefits to experienced users.
It allows for the introspection of a model by navigating to
classes on higher levels, that is, in the traditional sense: to
specifications of DSMLs, and adapt these if required. The
multi-level model in Fig. 8 in Sect. 5.2 illustrates how var-
ious levels of intrinsic classification are combined into one
model or, in other words: how a DSML can be specified
with a more general DSML. For example, a more generic
language for modeling computer hardware could comprise a
concept such as “computer” which could be used to model
more specific concepts, such as “laptop,” on the level below,
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while these more specific concepts could then be used to
model even more specific concepts. The generic concrete
syntax provided by a multi-level modeling language like the
FMML* can be replaced by domain-specific notations. To
this end, it is also possible to reuse and refine the concrete syn-
tax defined for concepts on a higher level on lower levels. The
graphical notation depicted in Fig. 8 indicates how classes
that serve the specification of notation elements could be con-
cretized to classes that refine the more general notation. A
corresponding multi-level tool supporting such a refinement
of notation elements is presented in [5].

The multi-faceted conception of multi-level modeling is
of pivotal relevance for the purpose of our investigation.
On the one hand, it suggests that neither those require-
ments proposed for the evaluation of conceptual models, e.g.,
[37,51,99], nor those proposed for modeling languages, cf.
[46,94], reflect exactly what could be expected from multi-
level modeling, cf. also [7]. On the other hand, related to that,
multi-level modeling is likely to serve different groups of
potential users. Those may include people who are interested
in objects on level 0—and how they relate to concepts on
higher levels. Different from traditional approaches, multi-
level modeling allows for representing objects on level 0
together with classes/objects on higher levels.

This brief discussion already hints at additional challenges
that come with multi-level modeling, compared to tradi-
tional modeling approaches. In the next section, we explore
such differences systematically, thus setting the stage for the
development of dissemination strategies.

3 Comparative evaluation

Since our focus is on object-oriented multi-level modeling, it
is natural to compare it to traditional object-oriented model-
ing. At first glance, it may appear that such a comparison can
be done easily. Since multi-level languages usually include
traditional object-oriented modeling as an integral part and
extend it with further concepts, they should be more pow-
erful. While this is a valid argument, it is not necessarily
convincing for two reasons. First, the additional concepts
increase language complexity, which leads one to reconsider
usability and comprehensibility. Second, an elaborate evalu-
ation of a modeling approach should not be restricted to the
concepts it provides, but also account for other aspects that
influence its utility.

Due to its multi-faceted nature, we compare multi-level
modeling also to traditional DSMLs, that is, those DSMLs
that are based on a MOF-like language architecture. The
motivation for a DSML is similar to that of multi-level mod-
eling in the sense that both aim at providing higher-level
language concepts. At the same time, they offer clear advan-
tages over GPMLs. Therefore, it would be inappropriate to

restrict the comparison to traditional object-oriented GPMLs
only. Note that DSMLs may be specified within a multi-level
language architecture, too. However, in that case, they would
qualify as multi-level modeling approaches.

3.1 A multi-perspective framework

Conceptual modeling serves different stakeholders for a
variety of specific purposes. Therefore, the evaluation of a
modeling approach should account for different perspectives.
The framework we propose comprises five perspectives (cf.
Table 1). It is intended to cover most relevant criteria, but
we do not claim it is complete. There are in fact two rele-
vant aspects that are either not accounted for or to a limited
degree only. Formal language properties such as correctness
and completeness are relevant criteria to evaluate particular
language specifications. However, they are hardly applicable
to multi-level modeling in general, since semantics of specific
multi-level languages differ in certain aspects. Therefore, for-
mal criteria are not accounted for in the framework. Second,
the concrete syntax, even though it may be of considerable
relevance for the usability of a modeling language, is not
directly accounted for either. This is for two reasons. First,
the variety of specific notations of multi-level modeling lan-
guages does not allow for a general assessment—which is
what we aim at. Second, a multi-level model may comprise
one or more DSMLs on different levels of abstraction. These
DSMLs may be added or modified along with their nota-
tions. Hence, there is not just one concrete syntax as it is the
case, e.g., for the UML. The examples in Fig. 8 illustrate this
multi-faceted nature of notations in multi-level modeling.

3.1.1 The essential design perspective: core abstractions

Concepts that allow for expressing abstraction are of pivotal
relevance for developing models that serve as a foundation for
adaptable and sustainable systems. To assess the utility of an
abstraction concept, two aspects can be distinguished. First,
what are common properties of what range of objects, a con-
cept allows to represent in a single abstraction (“abstraction
on”). Generalization, for example, allows capturing common
static and functional properties shared by a number of classes
within a superclass. This aspect indicates the potential for
reducing conceptual redundancy, which in turn contributes
to the ease and integrity of system changes (see, however,
also Sect. 3.1.2) and fosters the reuse of more abstract arti-
facts in different contexts. The quality of an abstraction in
this sense also depends on the integrity of modification. In
that respect it makes a difference, e.g., whether an extension
is monotonic (that is, it does not produce side effects on the
extended parts, like, e.g., specialization) or not (like, e.g.,
extending a process model by inserting an additional activ-
ity). The second aspect of an abstraction concept relates to
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Table 1 A multi-perspective framework—overview

Perspective Aspects

Operationalization

Design perspective Abstraction on and from

Engineering perspective Reuse, integrity, adaptability

Development perspective Mapping to implementation level

documents

User perspective Cognitive fit

Learning effort
Reduction of complexity
Customizability
Protection of investments

Economic perspective

Availability of trained professionals

Availability of mature tools

‘What are common properties of what range of objects, a
concept allows to represent in a single abstraction?
(abstraction on)

What is its potential to fade out aspects that are deemed
irrelevant for certain purposes? (abstraction from)

‘What concepts and mechanisms does an approach provide to
mitigate conflicts that arise from focusing on these aspects?

Is efficient and consistent transformation of models into
implementation documents supported?

Do the language concepts clearly relate to natural language
concepts? Are there semantic differences between modeling
language concepts and corresponding natural language
concepts that may contribute to misleading interpretations?

What effort does it take to learn the adequate use of a modeling
approach?

Does the application of the approach promise reduction of
complexity?

Which options are available to empower users with the
customization of modeling languages?

Are there any standards? Is the considered approach offered by
a renowned vendor?

To what extent are professionals available who are familiar
with an approach? Is the given approach/paradigm covered by
standard curricula?

What tools are available? Are they mature? Have they been
used outside of the research context?

its potential to fade out aspects that are deemed irrelevant for
certain purposes. In the ideal case, the aspects that are faded
out may change over time without affecting the invariant core
of asystem (“abstraction from”). This aspect is especially rel-
evant for the adaptability of a system. It is needless to say
that the benefits enabled by these abstraction concepts are not
compelling on their own. Instead, they chiefly depend on the
quality of the required domain knowledge. If an abstraction
used by a modeler is not invariant over time, it may seriously
compromise the adaptability of a system.

Traditional object-oriented modeling The pivotal abstrac-
tion concepts provided by the UML are classification,
generalization/specialization, encapsulation, composition/
decomposition, and polymorphism. The corresponding
assessment is shown in Table 2. Further abstraction concepts
such as aggregation, composition, redefinition, or delega-
tion are not accounted for, because they lack clear semantics
and/or are not supported by every traditional object-oriented
modeling approach.

Despite their undisputed expressive power, the abstraction
concepts provided by traditional object-oriented languages
are clearly limited. First, there is no way to account for
further levels of classification. Second, related to the first,
it is not possible to represent certain conceptual hierar-
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chies appropriately. This well-known limitation is illustrated
through the model in Fig. 1. It corresponds to the exam-
ple in Fig. 8. Following the design guideline to represent
knowledge about a domain on the highest level possi-
ble, the class PeripheralDevice includes attributes
which in part suggest instantiation (input, output),
in part inheritance, while others (highlighted with a grey
background)—including an operation—seem to be neither
inherited nor directly instantiated. The example also illus-
trates that the appropriate representation of knowledge may
demand for classes that are objects at the same time.

DSMLs The abstraction concepts provided by DSMLs vary.
They depend on the purpose of a language and particular
design decisions. Any abstraction concept offered by object-
oriented GPMLs could be offered by a DSML, too. There is,
however, one important difference. The abstraction concepts
of the object-oriented metalanguage a DSML is specified
with apply to metaclasses and not, as in the case of a GPML,
to classes. If corresponding concepts are to be provided by
a DSML (for example, generalization/specialization), too,
they need to be redefined in the corresponding metamodel,
because it is not possible to simple reuse those concepts from
the metalanguage: They are instantiated with the metamodel.
In addition to object-oriented abstraction concepts, a DSML
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Table2 Assessment of object-oriented abstraction concepts

Concept Abstraction on

Abstraction from

Comment

Classification (intentional) Types of properties. Advantage:
avoiding redundant specification;
all instances of a class can be
treated alike; additional property
types that apply to all instances
can be added—which may,
however, require changing the
state of instances

Generalization/specialization ~ Common property types shared by
a set of classes. Advantage:
avoiding redundant specification,
integrity; adding property types
to superclasses immediately
effective for subclasses

Encapsulation Functions (with different degrees
of protection/visibility).
Advantage: unified external
representation; prevention of
unauthorized modification of

object state

Polymorphism Abstract operation with uniform
name. Advantage: improves
readability of models/code
through use of “natural”

designators

Composition/decomposition ~ Composite parts. Advantage:
reduction of complexity by

fading out details

Specific properties; abstraction
from variation of properties.
Advantage: specific properties of
instances can be changed without
effecting a system’s integrity

Specific property types of
specialized classes; that is, from
variant parts of a system.
Advantage: specialization is
monotonic, no side effects on
general classes

Data structure. Advantage: data
structure can be changed without
side effects

Type of object that receives a
message. Advantage: new classes
with specific implementations of
abstract operation can be added
without side-effects on objects
that send requests

The system in its totality
(decomposition). Advantage:
reduction of complexity through
separation of concerns

Can be changed, but not without
affecting integrity of instances;
deleting properties is likely to
compromise (referential)
integrity

Substitutability constraint needs to
be accounted for

Only those changes of data
structures that do not affect
corresponding
functions/operations have no side
effects

Only possible, if operation
interface is not affected

Depends on specific semantics of
composition

may introduce domain-specific abstraction concepts such as
specific types of associations. The specification and use of
DSMLs suffer from a problem that is similar to the one that
limits the use of object-oriented GPMLs: It is not always pos-
sible to express all invariant knowledge about a domain in
the language specification. Even if one definitely knows that
instances of the classes that can be modeled with a DSML
have certain properties, these cannot be expressed in the lan-
guage specification.

Multi-level modeling Object-oriented multi-level models
provide the abstraction concepts of traditional object-oriented
modeling on every level, without the need to redefine them
on lower levels. Abstracting a set of classes to a meta-
class has the obvious advantage that the semantics of these
classes is controlled by the metaclass, whereas specializa-
tion allows for arbitrary extensions. Different from a generic
metaclass like “Class,” a more specific metaclass is suited to
clearly contribute to the intended integrity of the instances.
Since metaclasses can be classified into meta metaclasses,
this advantage applies to the construction of multi-level
DSMLs, too. Different from generalization/specialization,
metaclasses allow to specify the range of possible vari-

ations, which supports the integrity of respective system
changes. The introduction of metaclasses allows to abstract
from particular instances, which contributes to the reduc-
tion of model complexity and conceptual redundancy. If, for
example, certain values that are mandatory for each instance,
e.g., technical data of product types that apply to all of their
instances, these values are assigned only once with the class.

In addition to the core concepts, extensions enable further
abstraction. The additional concepts described in Sect. 2.2
allow for expressing contingent and incomplete knowledge.
There are cases, where the level of a class may vary with
the context it is used in. The concept of level contingency
allows for abstracting on commonalities shared by particular
interpretations on specific levels. To avoid conceptual incon-
sistencies and serious threats to system integrity, a contingent
class can be interpreted similar to the possibility of a propo-
sition in modal logic. The class being on level [ = n is true
in one possible world, whereas it may be on a level m with
m <> n in another possible world. Allowing for deferred
instantiation of associations as well as for the specification
of attributes with classes on levels above 1 reflects the fact
that the knowledge we have about lower levels is limited on
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upper levels. For example, we know that a car, modeled as a
class on level 3, has an engine. But we might not know the
engine type that is assigned to a particular model on level
1. Nevertheless, it helps avoiding conceptual redundancy to
abstract on all commonalities shared by cars on level 2 into
the concept of car on level 3. It reduces the range of possible
concretizations, and instantiations on L0, respectively. Thus,
it contributes to system integrity. Incomplete knowledge can
be expressed in traditional object-oriented modeling, too,
e.g., through abstract classes. But, it is not possible to express
incomplete knowledge that is later completed through instan-
tiation. Contingent attribute classes and associations between
contingent level classes allow for abstracting on contingent
and on incomplete knowledge.

3.1.2 The engineering perspective: support for relaxing
principal design conflicts

This perspective is very similar to the previous one, and it
could as well be called design perspective, especially because
it is also related to abstraction. However, it emphasizes a dif-
ferent approach. Instead of looking at concepts provided by
languages, its focus is on principal design conflicts. They
originate in conflicting measures to achieve generic goals
that need to be accounted for whenever models, software,
or languages are designed. This focus results in a specific
assessment criterion: What concepts does an approach pro-
vide to mitigate principal design conflicts? The conflicts we
explicitly account for are range of reuse vs. productivity of
reuse, and adaptability vs. integrity. The weight given to them
varies from project to project. But there will hardly be any
doubt about their fundamental importance.

Reuse: range versus productivity: Ever since the legendary
software engineering conference in Garmisch Partenkirchen
in the fall of 1968, software reuse has been considered as the
essential condition of building software that is both afford-
able and of high quality. On the one hand, reuse of existing
artifacts is suited to clearly increase productivity of software
development. On the other hand, economies of scale result-
ing from the range of applications an artifact can be reused
in, contributes to lowering the price of an artifact. Unfortu-
nately, both aspects are in an obvious conflict. The higher the
level of semantics of an artifact is, that is, the more specific
it is, the higher is its contribution to increasing productivity,
but the lower the likelihood that it can be reused in a wide
range of cases. With respect to design, various denominators
exist for this conflict (cf. [19]), with the “power/generality
trade-off™ [89, p. 71 ff.] being among the most prominent.
The conflict between range of reuse and productivity of reuse
corresponds to a principle conflict not only in design, but also
in theory building. While a theory should be generally appli-
cable and of high expressive power, it is often the case that
increasing one or the other is likely to lead to the falsifica-
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tion of a theory. Therefore, it is a common pattern in various
disciplines to systematically constrain the scope of a theory
to save it—which is a threat to its epistemological value.
Therefore, Popper condemned this strategy and demanded
that theories, on the contrary, should be designed in such a
way that the are easy to falsify [96, p. 78]. While one may or
may not follow Popper’s advice for theory building, it is not
a good idea to apply it to the design of artifacts that should
satisfy certain requirements—unless we have no issues with
not satisfying requirements. That means, we either have to
decide for a trade-off that seems to be the least painful in a
particular situation or try finding ways to mitigate the con-
flict. The following analysis is focused on the latter. Note that
for the purpose of this analysis, we do not use semantics in
the sense that there is one specific interpretation, but instead
in the sense how many different interpretations it allows for,
which is similar to the concept of information content as it
is used in the theory of science, e.g., [96, p. 19]: The larger
the number of interpretations that are excluded, the higher is
the level of semantics defined for a construct.

Traditional object-oriented modeling: It corresponds directly
to the idea of object-oriented GPMLs that they emphasize a
wide range of reuse and widely neglect support for modeling
productivity. Only models that are created with a GPML may
put more emphasis on economies of scale or on promoting
productivity. Every model specified with a GPML represents
a certain trade-off between these two objectives, suffering
either from a limited range of reuse or from a lack of support
for specific use cases. The only way to relax this conflict is
through generalization/specialization, which, however, is not
always sufficient. The examples of classes specified with a
GPML in Fig. 3 illustrate two shortcomings. First, the lan-
guage concepts, such as “class” and “attribute,” are so generic
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that their reuse hardly promotes the productivity of modelers.
Second, models created with a GPML can provide classes on
any level of specificity, but each class defined with a GPML
represents a particular trade-off. The conflict between range
of reuse and productivity can be relaxed only through gen-
eralization/specialization, as long as that is an option. The
use of GPMLs corresponds to a situation where people use a
certain, more or less specific terminology. If somebody asks
for the meaning of a term, the explanation would be some-
thing like “it is a thing.” Accordingly, whenever a new term
is introduced, it has to be defined from scratch using basic
concepts such as “thing” and “property”—in all events where
specialization is not appropriate.

DSMLs: Different from GPMLs, a DSML supports mod-
elers with knowledge that may promote their productivity
substantially. Also, the very existence of DSMLs provides
evidence that specialization is not enough for the reuse of
domain knowledge. However, similar to a GPML, every
DSML represents a specific trade-off between range of reuse
and productivity of reuse that can hardly be relaxed. If tech-
nical languages were defined like traditional DSMLs, people
who speak the language would benefit from the embedded
domain knowledge. The language could be used to define
more specific terms, the explanation of which would refer
to the language concept they were created with, e.g., “this
is a peripheral device” instead of “this is a thing.” However,
that would comprise only one step of abstraction. If some-
body continued asking, e.g., “what is a peripheral device,”
the answer would have to refer to basic language concepts—
similar to GPMLs. Accordingly, the introduction of new
concepts, e.g., “scanner,” would require defining them from
scratch—with the GPML that serves as the corresponding
metalanguage.

Multi-level modeling: In contrast to GPMLs and DSMLs,
multi-level models are not characterized by a clear separation
of modeling language and model. Instead, every language
concept can be specified with a higher-level language concept
which in turn may be specified with a further, still domain-
related concept. Therefore, multi-level modeling does not
require a particular trade-off, but may take advantage of a
wide range of reuse of its higher-level classes and promote
productivity with more specific classes—which, at the same
time, benefit from the economies of scale of higher level
classes by re-using them. This corresponds to the evolution
of technical languages. On a more general level, e.g., in a
textbook, general concepts used in a certain field are intro-
duced, like “computer hardware” in Fig. 3. The textbook
terminology is then used to develop refined terminologies
that fit more specific domains. Therefore, the design of a
DSML in a multi-level language architecture does not have
to start from scratch, but can reuse proven DSMLs with a
wider scope.

Adaptability versus integrity: As long as one is not a follower
of the slogan “embrace change” (expressed in the second
principle of the “agile manifesto” [14]), it is a good idea
to account for adaptability during system design already.
That also suggests accounting for integrity, since changing
a model or a schema of a system carries the risk of jeop-
ardizing integrity. If a schema allows for a wider range of
changes, that is, if it does not comprise constraints of some
kind that exclude dangerous changes, adaptability is high,
but integrity is threatened. Hence, there is a principal con-
flict between adaptability (in the sense of range of possible
changes) and integrity.

Traditional object-oriented modeling: In the case of a gen-
eral purpose modeling language, extensive changes to the
schema are possible, that is, the range of adaptability is
high. At the same time, the effort that is required for adapt-
ing the schema, as well as the related threat to integrity, is
high, too. Any concept, even the most bizarre one, can be
specified. Again, the only way to relax the conflict between
adaptability and integrity is to make use of abstraction. Gen-
eralization/specialization allows for monotonic extensions
of (super) classes. Hence, it supports changes that do not
jeopardize the integrity of the corresponding superclasses.
However, these extensions are not constrained through the
superclass, which threatens the integrity of extensions.
DSMLs: If a DSML is used to specify a model, the chances to
protect the integrity of the model during its modification are
clearly higher than with a GPML, since semantics of a DSML
constrains the range of possible modifications such as chang-
ing existing classes or the specification of new classes. At the
same time, the range of adaptability is lower. It is intention-
ally restricted to those adaptations that are not in conflict with
the domain knowledge embedded in the DSML. The par-
ticular trade-off between integrity and adaptability depends
on the design of a DSML: The more specific it is, that is,
the more semantics it represents, the lower is the range of
possible adaptations it allows for, and the better is its con-
tribution to integrity. A DSML that features a concept such
as “computer hardware” requires more effort to specify the
concept of a printer than a DSML that includes a concept
like “peripheral device” already. It cannot, however, provide
both a higher level of integrity and a higher level of adaptabil-
ity simultaneously. Similar to a GMPL, a DSML may allow
for using generalization/specialization to relax the conflict
between integrity and adaptability.

Multi-level modeling: While both traditional DSMLs and
traditional object-oriented GPMLs are based on the idea
that a system rests on models (or a schema) on one level
only, a multi-level architecture allows for the definition of
a hierarchy of models (or DSMLs). Thereby, multi-level
modeling provides additional measures to relax the conflict
between adaptability and integrity, because it allows to com-
bine the strengths of a rigid schema, namely to promote
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Fig.4 Illustration of multi-level system architecture

system integrity, with controlled degrees of adaptability. The
multi-level hierarchy shown in Fig. 3 allows for modifica-
tions on each level. If the particular types of printers covered
by the (meta-) concept ‘“Printer” are not sufficient for a
certain purpose, a further concept of printer can be intro-
duced on a higher level where its definition would be clearly
more restricted than in the case of a traditional DSML—
in the example by the domain-specific concept “Peripheral
Device.” Accordingly, and different from traditional system
architectures, a multi-level system would not be restricted to
one schema, but it could be based on a more or less extensive
hierarchy of schemata on different levels. Figure 4 illustrates
a multi-level system architecture. If the schema 0.1 needs to
be adapted to new requirements and this cannot be achieved
through monotonic extensions of the schema, the architec-
ture would allow to navigate the schema hierarchy to a (meta)
schema that allows for a concretization which fits the new
requirements. The example shown in Fig. 4 indicates that
one would go up to schema 3.1 and concretize it step-wise to
schema 0.4. Note that the separation of different schemata
serves illustration purposes. The schema hierarchy would
more likely be represented in one multi-level model. That cor-
responds to an organization that combines the advantages of
bureaucratic rules (consistency, reliability) with the strengths
of flat hierarchies (agility, adaptability). It is needless to say
that neither the construction of such a multi-level model nor
schema migration is trivial. While modifications of schemata
on higher levels are suited to enable convenient adaptations of
an entire tree of schemata below them, changes that result in
the deletion of concepts within a schema are a serious threat
to integrity. The development of consistent change opera-
tions of this kind is a substantial research challenge (see [43]
and comments on future research in Sect. 6).

3.1.3 The software development perspective: mapping to
implementation documents

To support a seamless software development process, a con-
ceptual modeling language should allow for the efficient
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and consistent transformation of models into implementation
documents. This is not an inherent property of a modeling
language, but rather reflects its relation to implementation
languages. In the ideal case, modeling concepts correspond
directly to concepts used in the respective implementation
language. If that is not possible, there is need for unambigu-
ous mappings from modeling concepts or model patterns
to concepts of an implementation language. The mapping
to implementation languages may not be possible without
the loss of abstraction and, hence, information. As a conse-
quence, the maintainability of code created through such a
mapping would suffer. That is not a problem as long as code
can be completely generated from models. However, this is
not always the case. If, e.g., a modeling language allows
for generalization/specialization and the implementation lan-
guage, in contrast, does not, generalization hierarchies in the
model have to be flattened in the code. Then, the abstraction
mismatch between model and code will create an obstacle to
the synchronization of a model after the respective code had
been changed.

Traditional object-oriented modeling: There is an obvi-
ous correspondence between object-oriented modeling and
object-oriented programming languages. Therefore, the map-
ping of models to code is well supported. However, as we
shall see, this is not the case for the integration of models and
code, which is required for using models during the entire life
cycle of a system, cf. Sect. 4.1.

DSMLs: Mapping models created with a DSML to object-
oriented code is not possible in a straightforward way. A
DSML is usually specified with a metamodel, that is, through
metaclasses. They define the semantics of the classes that can
be modeled with the DSML. Since most object-oriented pro-
gramming languages do not include metaclasses, a metaclass
has to be mapped to a class, which could be instantiated only
once into an object on MO that would serve representing a
particular class of the model. This loss of semantics does not
only limit the utility of the code (particular instances cannot
be managed as such). It also compromises the maintainability
of code.

Multi-level modeling: The assessment of multi-level model-
ing leads to an ambivalent result. If multi-level models have
to be mapped to traditional object-oriented programming lan-
guages, the result is even worse than with DSMLs, because
more semantics is lost. The situation is, however, completely
different, if a multi-level modeling language is supplemented
with a multi-level programming language, cf. Sect. 4. In that
case, a clear correspondence is enabled and the maintenance
of code could benefit from the reduction of conceptual com-
plexity enabled by multi-level modeling.
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3.1.4 The user perspective

The users of a modeling approach comprise a wide range
from domain experts who are not familiar with and not too
much interested in modeling languages to seasoned system
analysts and designers. Due to the diversity of prospective
users, itis hardly possible to account for all of them explicitly.
Instead, we distinguish two prototypes of users: occasional
users such as domain experts with no or little modeling
experience and expert users who have long standing experi-
ence with conceptual modeling. For both groups, a modeling
approach should serve as an effective tool to structure and
analyze a domain for a given purpose. While we assume that
notation is relevant for users, we do not account for it, because
that would require the analysis of particular languages. The
following criteria are in part inspired by [45,47].

Cognitive fit: This criterion serves assessing how well con-
cepts of a modeling language and the models created with
it fit the cognitive structures of prospective users. Applying
it suggests to analyze two interrelated aspects of conceptual
modeling. First, the correspondence of language concepts to
natural language provides an indication of the comprehen-
sibility, both of modeling languages and models. Semantic
differences between modeling language concepts and cor-
responding natural language concepts may contribute to
misleading interpretations. This criterion is especially rel-
evant for occasional and novice users. Second, it refers to
principal patterns of human conceptualization, that is, how
people develop and make sense of categories. This criterion
is especially relevant for occasional and novice users with
respect to comprehensibility and acceptance. It suggests to
account for research in cognitive psychology and cognitive
linguistics. In particular, cognitive linguistics, with its key
tenet of natural language being reflective of how we think and
act [74], is relevant in this respect. Note that this criterion is
not meant to take natural language or even the inappropriate
use of it as a model for the design of modeling languages. A
plethora of studies in cognitive psychology show that humans
struggle with logic and are often not able to provide consis-
tent definitions of concepts they seem to be familiar with
[34,34,68,109]. These cognitive limitations and the corre-
sponding vagueness of natural language are a clear obstacle
to designing consistent models, especially with respect to
novice users. However, presenting users with language con-
cepts that are in confusing contrast to concepts their cognition
is based on carries the risk to produce confusion and would,
hence, be counterproductive.

Traditional object-oriented modeling: It is a widespread
assumption that object-oriented modeling provides intuitive
concepts that correspond directly to the concepts humans
use to structure and understand the world. The claim that an
“object model” resembles “human cognition” [20, p. 2] or
Meyer’s famous exclamation “Many objects are just there for

the picking” [84, p. 117], go hardly undisputed. While there
is evidence that objects and categories of objects (concepts)
are pivotal for human cognition, there is also evidence that the
way humans build concepts can be clearly different from the
construction of classes in object-oriented modeling. Different
approaches in (cognitive) linguistics, e.g., idealized cognitive
models [75, p. 91], prototype theory [97], “Gestalt” the-
ory [83], family resemblance [76, p. 12], and schemas [104,
p- 10], hold that people categorize a given instance relative to
a prototype, rather than in terms of necessary and sufficient
conditions (the latter being presumed by classical approaches
to categorization [57, p. 249]). This means that, in deciding
on category membership, people compare a given instance to
an abstract mental representation—the prototype class—that
best represents instances of a category [57, p. 249]. The cat-
egory that is chosen for an object may vary with the context.
This prototype-based view is in obvious contrast to logic and
to object-oriented modeling, since it does not fit the idea that
the relationship between an instance and its class is clearly
defined (either intentionally or extensionally). Instead, cogni-
tive linguistics suggests “membership gradience” [75, p. 12],
i.e., the classification of an object can be perceived as more
or less typical. But even those who are familiar with logic
may struggle with object-oriented concepts, since the notion
of a class (an object is of one and one class only) is different
from that in logic, where an object can be of many classes.
What does that imply for the evaluation of traditional
object-oriented modeling? First, the assumption that object-
oriented concepts clearly correspond with natural language
and human cognition seems too daring. This is especially
relevant with respect to novice users. However, cognitive fit
is clearly better with experienced users of object-oriented
modeling languages. Many of them are likely to agree with
Meyer. At the same time, they might well ask themselves
whether they do not suffer from a déformation professionelle.
That would be a problem, if it compromised the quality
of the models. However, the empirical fact that humans
use conceptualizations different from those suggested by
object-oriented modeling does not necessarily disqualify the
latter. Similarly, the fact that most people struggle with logic
does not disqualify logic as a formidable tool for thinking.
There is evidence that supports this viewpoint: Philosophical
ontologies like those proposed by [23] or [58] show obvious
similarities with object-oriented concepts. They do not come
with the claim to represent categories that humans naturally
prefer, but rather with the proposition that they are especially
suited to develop a proper structure of the world. Therefore,
the evaluation with respect to cognitive fit leads to an ambiva-
lent result.
DSMLs: There is a large range of concepts that might be
provided by DSMLs. Therefore, a general assessment of cog-
nitive fit is not feasible. However, in principle, DSMLs allow
for the specification of concepts that correspond directly to
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the technical terminology users in a certain domain are famil-
iar with. In addition, a descriptive concrete syntax is suited
to strengthen this correspondence. There is, however, one
drawback that compromises the “natural” use of DSMLs.
The specification of a DSML requires a clear distinction of
language and language application. Apart from the fact that
there are hardly convincing criteria to guide this distinction
(for a proposal of corresponding criteria see [45, p. 15 f.]),
such a distinction is not common in natural language. Take,
for example, a DSML to model appliances. It may include a
concept like “Cooker,” which may be used to model an induc-
tion cooker. In natural language, both would be regarded as
concepts, and, hence, as belonging to a language.
Multi-level modeling: Multi-level modeling features simi-
lar basic concepts as traditional object-oriented modeling.
Therefore, the assessment of cognitive fit corresponds with
that of traditional object-oriented modeling. The additional
abstraction concepts may lead to concerns that they do not
fit human cognition. It is hardly presumptuous to assume
that even educated people will struggle with classes on lev-
els above 1 or with ideas such as deferred instantiation. That
would suggest that the friction between multi-level models
and human cognition is more distinct than in the case of
object-oriented modeling.

However, research in cognitive linguistics and in cognitive
psychology indicates that remarkable similarities between
natural language and aspects of multi-level modeling exist.
People use abstraction hierarchies to organize their knowl-
edge. Structures used for conceptualization are referred to as
frames [35], domains [77], or schemata [78]. In particular,
work on cognitive grammar by Langacker [78, pp. 132-137]
who introduced the notion of “schematicity”” shows striking
similarities to multi-level modeling. Schemata are organized
in hierarchies, where a schema represents certain features
that are regarded as characteristic. A schema can be refined
into more specific schemata, which in turn may be refined
into further schemata. It is important that schema refinement
is not restricted to a certain kind, such as adding further fea-
tures. It may also comprise deleting features or assigning
more specific values, etc. [104, p. 4]. Hence, the creation of
levels in multi-level modeling would be one specific case of
schematicity.

Further evidence is provided by learning theories. In his
studies of human learning strategies, Bateson distinguishes
five evolutionary steps, where every step is characterized by
an increase of abstraction, which broadens the range of pos-
sibilities [12, p. 283 f]. In a similar vein, studies in cognitive
psychology have shown that major advances in human learn-
ing require once in a while to “reframe” our view of the
world or, in other words, to go beyond existing conceptual-
izations [108, p. 95 f]. As a consequence, there does not have
to be a substantial conceptual friction between a multi-level
model and human cognition. This is, of course, a preliminary

@ Springer

assumption that requires further refinement and examination.
Apart from that, it seems appropriate to assume that the abil-
ity and willingness to use multi-level abstractions vary, which
suggests to provide different groups of users with different
levels of abstraction.

In addition, many taxonomies, e.g., in biology, support
the claim that multi-level modeling is not in conflict with
common use of natural language. Often, taxonomies fea-
ture abstraction hierarchies that do not exactly correspond
to generalization/specialization, since they assign values to
concepts on higher levels that apply to lower levels only. For
example, the category “cat” is characterized by “number of
legs = 4,” which is valid for all subcategories such as “tiger”
and “house cat,” but literally applies only to specific exem-
plars.

Learning effort: The effort it takes to learn how to adequately
use a modeling language is an ambivalent aspect, but needs
to be accounted for. Modeling projects do not only involve
expert users, but also participants who are in touch with mod-
els only occasionally and who are not able or not willing to
spend much effort to learn a modeling language. In this sense,
this aspect is directly related to cognitive fit.

Traditional object-oriented modeling: There are various
studies that report how novice users struggle with learning
GMPLs like the ERM or the UML (e.g., [13,101]). However,
it is not entirely clear whether this is caused by idiosyncratic
language features or by more general limitations concerning
the proper use of logic and abstractions. In addition, master-
ing amodeling language is not restricted to learn the concepts
it offers, but includes their appropriate application, which
will usually be the bigger challenge.

DSMLs: DSMLs are suited to clearly decrease the learning
effort for those who are familiar with the domain that a lan-
guage targets. However, if language concepts are different
from those offered by the respective domain terminology,
learning may be especially demanding. That is likely the
case, too, for those who are not familiar with the domain
terminology.

Multi-level modeling: Assessing the learning effort related to
multi-level modeling demands for a differentiated approach.
On the one hand, learning the specific abstraction concepts,
the specific notion of levels, deferred instantiation, etc., is
challenging, because it adds complexity and it is in contrast
to known traditional modeling languages. This is a challenge
not only to novice, but also to expert modelers. However,
it is not mandatory that users are confronted with this chal-
lenge. Multi-level modeling does not imply to learn the basic
abstraction concepts. Instead, the use of a multi-level model
may be restricted to levels that correspond to abstractions,
users are familiar with. Figure 7 shows an example of such
a diagram. It comprises classes/objects on M1 and on MO
only. Users who are familiar with the UML should not have
a problem with making sense of the diagram (even though
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it clearly extends the representations possible with regular
UML class diagram editors). In addition, the representation
of a multi-level model does not necessarily require to explic-
itly account for levels. The example in Fig. 10 shows how
a multi-level model can be presented to users in a GUI that
does not require the notion of levels, but includes only con-
cepts, users of the corresponding domain should be able to
understand.

Reduction of complexity: This criterion is relevant from the
engineering and the economic perspective, too. It is assigned
to the user perspective, since reduction of complexity should
not only foster maintainability and increase modeling pro-
ductivity, it should also be suited to reduce the cognitive
load users have to cope with. On the one hand, this criterion
relates to the abstraction concepts provided to modelers. On
the other hand, it relates to the complexity of the language
itself. Note that the reduction of complexity will usually
imply to increase complexity at first. Therefore, a language
may be more difficult to learn and it may be more demanding
to apply it properly, but this additional complexity may pay
off in the end by enabling more effective reduction of com-
plexity. However, while it may make sense for professional
modelers to take the extra effort to learn a more complex
language, occasional users will likely be put off by this kind
of complexity. Therefore, it should be possible to hide com-
plexity from certain groups of users.

Traditional object-oriented modeling: As far as reduction
of complexity is concerned, the assessment is ambivalent.
On the one hand, the abstraction concepts considered above
foster the reduction of complexity. On the other hand, a
GPML forces modelers to develop a domain model from
scratch instead of providing them with proven, domain-
specific abstractions.

DSMLs: Compared to GMPLs, DSMLs are suited to clearly
reduce complexity for language users, because they relieve
them from the burden to structure a domain from scratch. The
benefit provided by this reduction of complexity depends on
how a DSML fits the domain it is used in.

Multi-level modeling: Again, the assessment of multi-level
modeling depends on the use case. An elaborate multi-
level model that also represents proven domain concepts
will clearly promote the reduction of complexity, similar to
DSMLs. Using a plain multi-level language only provides
users with powerful measures to reduce complexity. How-
ever, their proper use may increase complexity at first.
Customizability: A modeling approach should provide means
to adapt its concepts to specific needs. It is hardly pos-
sible to foresee all relevant use scenarios of a modeling
approach. Safe and convenient means to customize a lan-
guage clearly increase its utility. Customizability corre-
sponds to adaptability, but is focused on those adaptations
that can be done by users. For that purpose, they need
to follow certain change patterns that allow for safe and

fairly convenient adaptation. The options offered by the three
compared approaches to enable this kind of adaptation are
illustrated through the simplified language architectures in
Fig. 5.

Traditional object-oriented modeling: Customizability of
traditional object-oriented modeling languages is clearly lim-
ited. Extension mechanisms such as UML profiles are widely
used and have shown their usefulness. However, they are
restricted to monotonic extensions of the metamodel (that
is, they do not allow for changing the UML itself) and to
extensions or modifications of the concrete syntax. Modifi-
cations of language concepts, especially of domain-specific
concepts, are not possible. First, they are out of the scope
of a GPML. Second, the metamodel of a GPML is on M2.
Therefore, it does not allow for the instantiation of language
concepts on M2.

DSMLs: A DSML can be designed for customization. As
shown in Fig. 5, the meta-metamodel on M3 may include
attributes that allow specifying on M2 whether a language
feature is mandatory or optional. If, e.g., an attribute like
salesPrice was marked as optional on M2, the language
user would have the choice to include it in his variant of the
language or not. At the same time, it would be possible to
prevent the deletion of properties that are marked as manda-
tory. Extending a DSML by adding further concepts, that
is, metaclasses, is conceivable, but that is likely to require
a non-trivial modification of the metamodel. Therefore, it
hardly qualifies as a customization option. It is not possible
to specify features that apply to objects on MO, though. Even
if one knew that every particular product needs to carry a
serial number, this knowledge could not be expressed with
the language specification.

Multi-level modeling: A multi-level model enables powerful
customization options, which result from additional levels
of classification. Therefore, customization is not restricted
to a particular language level, as it is the case for tradi-
tional DSML, but can be applied to any level. Customization
on any level can be supported or restricted by higher-
level language layers. If, for example, a higher-level class
such as PeripheralDevice defines the optional intrin-
sic attribute serialNo, it could be activated or not with
the customization of the class Printer. Apart from that,
it is possible, like with traditional DSMLs, to define addi-
tional attributes that were not already specified on a higher
level, like, e.g., resolution, because the meta concept
Attribute is available on every level above L2 (see cor-
responding metamodels in [25,49]). Adding classes to a level
is a valid customization option as long as a new class can be
concretized from a (meta-) class on a higher level. If that is
not possible, the required modifications are too demanding
to leave them to users. Different from a traditional DSML, a
multi-level model allows adding properties that are intended
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Fig.5 Illustration of customization options

Table 3 Assessment of object-oriented abstraction concepts

Customization Example GPML DSML MLM
Add property Attribute pagePerMin Not an option Possible Possible
accounted for
in language
spec
Add property not Attribute resolution Not an option Possible Possible

accounted for
language spec

Remove property Attribute salesPrice

Add new concept Class Scanner

Add property of Attribute serialNo

instance on MO

Not an option

Not an option

Not an option

Possible, could
be prevented

Possible, could be prevented

Possible, at best
through
concretization
of metaclass

Conceivable, but no support

Possible Possible

for instantiation on MO only, such as the intrinsic attribute
serialNo in Fig. 5.

Table 3 summarizes the comparative assessment of cus-
tomization options.

3.1.5 The economic perspective: does it pay off?

For a modeling approach to be successful in practice, it
should promise economic benefits over other approaches.

@ Springer

Some of the criteria discussed above are of obvious economic
relevance, such as contribution to modeler productivity and
model quality or user acceptance. In addition, there are a
few specific aspects that are widely orthogonal to inherent
properties of a modeling approach.

Protection of investments: The investments into a modeling
approach can be substantial. Therefore, their effective pro-
tection is a relevant issue. It is promoted by reliable vendors
and standards.
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Availability of trained professionals: Modeling is an ambi-
tious activity that demands for highly skilled people. There-
fore, the availability of trained professionals, either in-house
or with external service providers, is a mandatory prerequi-
site. At the same time, it has an impact on costs.
Availability of mature tools: The creation and use of concep-
tual models will usually require modeling tools. These tools
have to feature a certain degree of maturity. The larger the
market and the higher the competition between tool vendors
is, the better will the terms and conditions for acquiring tools
be.

Different from the previous perspective, the three criteria
that form the economic perspective are not treated separately,
since they are closely related.

Traditional object-oriented modeling: At first sight, it seems
obvious that object-oriented modeling in general and the
UML in particular promote economics of conceptual model-
ing. Since the UML is not only standardized by the OMG, but
also widely used in industry, it is suited to protect investments
into tools and models. In addition, the wide dissemination of
the UML has promoted the availability of professionals who
are familiar with the language. It also enabled the evolution
of a market for tools which are available at low costs. How-
ever, as far as productivity is concerned, GPMLs provide
little support.

DSMLs: With respect to those economic aspects that do not
relate to inherent language properties, DSMLs will in gen-
eral perform worse than GPMLs. On the other hand, their
contribution to productivity should be clearly better. The pro-
ductivity gain enabled by DSMLs is supported by various,
sometimes enthusiastic reports on the benefits they provided
in particular use cases, cf., e.g., [70,105]. These two oppo-
site aspects of DSML economics recommend to evaluate the
trade-off between a DSML and a GPML in each individual
case.

Multi-level modeling: As far the availability of tools and
professionals is concerned, the economics of multi-level
modeling is disadvantageous, to say the least. This is the case,
too, for the protection of investments into tools. However,
the investments into training may even pay off, if multi-
level tools are not available, since it is suited to develop
modeling competence in general. The contribution to pro-
ductivity depends on the availability of multi-level models
that can be reused and adapted to specific needs. If a vari-
ety of domain-specific multi-level languages/models exist,
model productivity would benefit even more than with cor-
responding traditional DSMLs, since it would be possible
to use a higher-level DSML to specify a more specific
DSML. Similar to DSMLs, the ambivalent economics of
multi-level modeling have to be evaluated in each individ-
ual case.

3.1.6 Resumé

The comparative evaluation of multi-level modeling con-
firms its strengths in terms of enabling more abstraction. In
particular, it does allow not only to combine specific ben-
efits of DSMLs and GPMLs, but to relax essential design
conflicts to a degree that clearly exceeds the possibilities
of both. Similarly to the design conflicts discussed above,
multi-level modeling allows relaxing the conflict between
open and efficient communication, or, in other words, the
conflict between a high level of integration (“tight coupling”)
and a low level of integration (“loose coupling”); in cases,
where a class is too specific for a participating component,
it is still possible to use a higher-level class as a reference
to enable communication. If, e.g., a component receives an
object of the class “CPL-844,” which it does not know, it
could still ask the object for its class and apply a useful inter-
pretation as long as it knows that class, e.g., “Printer.” That
would be clearly better than getting an answer like “T am
of Class” as it would be given in traditional object-oriented
systems.

Furthermore, the concern that multi-level modeling is in
contrast to conceptualizations users are familiar with must
be put into perspective. While the complexity represented by
some multi-level models may overwhelm many, there is, at
the same time, evidence that multi-level models correspond
to the construction of concepts in natural language, espe-
cially in terms of a correspondence to concept hierarchies
discovered in cognitive linguistics. Against this background,
it seems clearly more “natural” to allow for an unlimited
number of levels than to introduce an arbitrary upper limit
as it is the case for traditional object-oriented modeling and
traditional DSMLs.

These strengths and the potential of multi-level model-
ing are contrasted by three serious drawbacks. First, from
an economic perspective, multi-level modeling suffers from
a lack of unity, mature tools and dissemination, which cre-
ates a serious obstacle to its use in practice. Therefore, for
promoting the future development of multi-level modeling,
its dissemination is of pivotal relevance. Second, only a few
preliminary approaches exist that provide specific support for
the design of multi-level models [31,48]. This lack of spe-
cific multi-level design methods is a serious restriction, too,
since most prospective users are likely overwhelmed with
the construction of multi-level models, cf. also [66], which
results in two recommendations. On the one hand, there is
need for specific multi-level modeling methods; on the other
hand, tools are required that allow taking advantage of multi-
level models, butinclude means to hide their complexity from
users. Third, the utility of multi-level models is substantially
limited as long as their implementation is restricted to tradi-
tional object-oriented languages. That recommends widen-
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ing the scope to include multi-level programming languages,
too.

4 Extending the scope: why programming
languages should be accounted for, too

Even though conceptual modeling is not restricted to the
design of software systems, the support of software develop-
ment is arguably its pivotal purpose. Therefore, the transition
from model to code should be as smooth as possible. That
requires accounting for programming languages, too. A
prominent example of this transition is the generation of code
from models, which is at the core of most approaches to
model-driven software development (MDSD).

4.1 The (avoidable) pain of synchronization

MDSD is based on two plausible assumptions. First, concep-
tual models are a more suitable medium to analyze and design
a system than code. They enable a higher level of abstraction,
and, especially in the case of DSMLs, foster communication
between different stakeholders and promote the productiv-
ity of software designers. Second, coding is a cumbersome
and error-prone activity. These are convincing arguments,
which are supported by various studies that confirm a clear
gain in productivity, especially with the use of DSMLs, e.g.,
[41,69,70,103]. In addition, specific architectures for imple-
menting MDSD on a tool stack have been proposed, e.g.,
[93], in order to protect investments by abstracting imple-
mentation languages and run-time platforms away. Despite
the plausible benefits of MDSD, it has a limitation resulting
simply from the fact that models and programs are repre-
sented in different documents, which has two implications.
First, there is a need to synchronize both representations after
changes were performed on one document. As long as syn-
chronization cannot be completely automated, which is rather
the rule than the exception, the separation of representations
is a clear threat to integrity and also to the investments into
models, as they are likely to be outdated over time. Second,
due to the lack of integration of both representations, it is not
possible to inspect additional information provided by mod-
els during the execution of code. In the ideal case, reflection
would not only allow for introspection, that is, getting infor-
mation about the (meta) model, which defines the conceptual
foundation of the code, but also to change the foundation and
the code simultaneously. Research on “models at run time” is
aimed at enabling this kind of reflection, sometimes extended
by reasoning on models [3,17]. That includes work on control
mechanisms that enable a software system to adapt itself to
new requirements at run time, which are represented in corre-
sponding models, e.g., in goal models [24]. However, these
mechanisms are restricted to certain predefined ranges of
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adapting code to changes in corresponding models. They are
notintended to support mutual adaptation or synchronization.

There are approaches that aim at closing the semantic gap
between programming and modeling languages through a
common metamodel. UMPLE [80] provides a common foun-
dation for UML and Java. To this end, it extends Java with
concepts to represent associations. Thus, it allows storing a
UML class diagram as a Java program (except for the rep-
resentation of the diagram layout). “Java Model Parser and
Printer” (JaMoPP) [39] is taking a similar approach, mainly
for reengineering purposes. Like UMPLE, it allows treating a
Java program as an instance of the metamodel and, hence, as
a model that could also be presented using a graphical nota-
tion. The model could then be edited in a graphical editor and
stored again as Java code (together with additional informa-
tion on the layout of the diagram). MoDisco [21] is a further
example of this approach. While these tools allow for a tight
integration of models and code on a conceptual level, they
still require the synchronization of models and code. Inde-
pendent from that, the approach to instantiate models and
code from a common metamodel does not work for multi-
level modeling unless multi-level programming languages
are available. Generating code created with a traditional
object-oriented programming language from models with
multiple levels will always result in a loss of information and
conceptual redundancy within the code. In other words, the
“accidental complexity” that could be avoided through multi-
level modeling is then embedded in the code. As long as code
cannot be entirely generated from a multi-level model, that
would substantially compromise software maintainability.
Independent from that, “flattening” a multi-level model into
traditional object-oriented code would not allow to inspect
the intended conceptual foundation of software at run time.

At this point, we refrain from considering further
approaches to synchronize models and code. Instead, we
focus on a principal question that relates to the integration
of models and code and, hence, to both, synchronization and
introspection: Why is there a need to generate code anyway?

4.2 Prospects of a common representation of
models and programs

Even those approaches that feature a common metamodel of
code and models and that allow to represent models through
code depend on the separate representation of models and
code during the time a model is being edited in a graphical
model editor. This is for a principle limitation of traditional
object-oriented programming languages. Assume a class dia-
gram is edited with one of these tools. That requires classes to
be represented as objects on MO in the graphical model edi-
tor. In traditional languages (with one level of objects only),
there is no other way. It is not possible to represent a class
that is part of a model with a class in the model editor, since
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that would require that classes may have a state to repre-
sent properties or references to other classes. Therefore, the
model cannot be executed, since that would require instan-
tiating it—which is not possible because it is represented
through objects on MO (see illustration in Fig. 6) and not on
M1, where it conceptually belongs.

Integrating a multi-level modeling language with a multi-
level programming language would solve two problems at
the same time. First, there would be no semantic mismatch
between a multi-level model and the corresponding code.
Second, it would be possible to enable the common rep-
resentation of models and programs during run time. If a
multi-level modeling environment is implemented with a
multi-level programming language, the classes (or meta-
classes) that represent a model will be represented as objects
on the same level in the editor. Therefore, a multi-level pro-
gramming language would allow for the integration of mod-
eling environments with run-time environments. It would
enable to instantiate (or concretize, respectively) classes at
any level from their metaclasses within the model editor,
thus resulting in a substantial gain when it comes to run-time
adaptability. Furthermore, it would be possible to provide
users with multi-level reflection. Smalltalk users are familiar
with the benefit of navigating not only through objects and
classes, but to also inspect metaclasses at run time. However,
Smalltalk is restricted to one metalevel only and to meta-
classes that must not have more than one default instance.

There are a few multi-level programming languages.
DeepJava [73] and Deep Ruby [87] extend object-oriented
programming languages with the capability to create classes
at run time and to enable an arbitrary number of levels. XMF
[26] is based on a dedicated, reflective language architec-
ture, the core of which is defined in a compact, recursive
meta model, XCore. The architecture enables the construc-

tion of classes on an arbitrary number of levels. The levels
are not defined explicitly, but instead determined dynami-
cally. The XModeler, the language engineering environment
that XMF is part of, serves the specification and imple-
mentation of programming and modeling languages as well
as the execution of corresponding programs and models. It
also features a metamodeling editor that supports the gen-
eration of corresponding model editors from meta models.
The already mentioned FMMLX, a multi-level modeling and
execution language, is implemented as an instantiation of an
extended version of XCore. The corresponding version of the
XModeler, XModelerM™3 (see screenshot in Fig. 9), features
a common representation of multi-level models and multi-
level programs at run time. Code and model diagrams are two
(out of many possible) views on this common representation.
This enables system architectures that clearly contribute to
empowering users (cf. the outline of self-referential enter-
prise systems in Sect. 5.4): The model that represents the
code can be navigated and possibly changed at run time. A
further approach to enhance the attractiveness of multi-level
modeling is represented by tools that allow for model anal-
ysis, retrieval and reasoning such as, e.g., by Melanee [6] or
ConceptBase [62].

5 Dissemination strategies

No matter how attractive an artifact looks from an academic
perspective, its utility will usually depend on its dissemi-
nation. This is especially the case for languages and their

3 The XModelerML as well as various example models can be down-
loaded from the webpages of the project “Language Engineering for
Multi-Level Modeling” at https://www.wi-inf.uni-duisburg-essen.de/
LE4AMM/.
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corresponding tools. It does not require an extensive anal-
ysis of the current state to realize that the lack of common
recognition and of noteworthy dissemination indicate a con-
siderable weakness. It is not only a problem for those who
regard the widespread use of a language its primary purpose
and the ultimate proof of its utility. It is unsatisfactory, too,
for those who mainly aim at advancing the state of research.
The consolidation of the state of the art and the development
of tools require resources that are easily beyond the possi-
bilities of a relatively small group of researchers, most of
whom cannot even dedicate all their resources to research on
multi-level modeling. Furthermore, the remaining research
challenges, cf. Sect. 6, are substantial, which also demands
for a larger community of dedicated researchers.

In general, prospective users are hard to convince of the
advantages of a new approach. Even if that can be accom-
plished, most users will still be reluctant to adopt it. On the
one hand, they do not want to sacrifice their previous to arti-
facts designed with traditional languages. On the other hand,
they might doubt that investments in new languages are suffi-
ciently protected as long as they are not widely disseminated
or even standardized. There are basically two options to over-
come this dilemma. If an approach has the disruptive power
to substantially improve the economics of using modeling
languages (increase productivity, cut costs, etc.), there are
good chances that more and more users will adopt it. If that
is not likely to happen, the second option would be to apply
a less offensive strategy, by introducing the new approach
as an add-on to traditional approaches. With regard to the
multi-faceted conception of multi-level modeling, the choice
of a dissemination strategy depends on specific purposes and
characteristics of prospective users groups. What may serve
as a convincing argument to consider multi-level modeling
as an alternative for some, may be not relevant to others.
Also, some prospective users might not be interested in a
comprehensive analysis of prospects offered by multi-level
modeling. Therefore, in addition to providing convincing
explanations of specific incentives, narratives might be help-
ful in arousing interest in multi-level modeling [22].

In the following, we distinguish between different pur-
poses and user groups to outline four prototypical dissemina-
tion strategies. They all rely on the integration of a multi-level
modeling language with a multi-level programming lan-
guage. Note that the idealized target groups referred to in the
strategies do not necessarily represent actual groups. Instead,
they serve as prototypes. By its very nature, the outline of
strategies is in part speculative and not free of contingencies.
Therefore, it is mainly intended to contribute to a needed
debate on dissemination.

@ Springer

5.1 Hiding those additional levels or: intrusion
through the back door

The primary target group of this strategy are system analysts
and teachers who regard traditional modeling languages such
as the UML as acommodity. They are not too much interested
in peculiarities of language semantics. Their focus is more on
the pragmatics of modeling. They know that involving users
or teaching students can be very challenging, mainly because
people often struggle with the level of abstraction imposed
by conceptual models. Accounting for exemplary instances
and allowing for interaction with a model are suited to induce
attention and understanding.

The incentives that are provided with the use of a multi-
level modeling tool are obvious. Investments in previous
training as well as existing expertise are protected. At the
same time, a monotonic extension is offered that does not
require extra effort, but is likely to improve communica-
tion through models and teaching. A corresponding narrative
could elaborate on the known problems people have with
understanding conceptual models and on the need for low-
ering the level of abstraction without giving up on model
quality. Figure 7 illustrates how a UML class diagram
editor can be extended to integrate the representation of
executable objects on MO without mentioning levels above
MI. This is especially helpful for students in an introduc-
tory course on object-oriented modeling. Not only that they
see the relationship between classes and objects, they can
also change the structure and behavior of objects by mod-
ifying the corresponding model. The screenshot was taken
from the XModelerM. This is not possible with traditional
tools, because that would require implementation languages,
which, at least, feature classes on M2, cf. Sect. 4.

5.2 Relieving the pain: focus on frustration with the
traditional approach

The primary target group of this strategy are language
developers and ambitious and reflective modelers who are
unsatisfied with, if not frustrated by limitations of traditional
(meta) modeling languages that compromise the quality of
languages and models. Professionals in this group have likely
experienced serious problems. A common problem, which
modelers who design information systems are familiar with,
is caused by the lack of abstraction of both traditional mod-
eling languages and implementation languages. A typical
example is product types. Often, there is need to distinguish
between different product types. However, especially if it is
required to distinguish particular product instances, there is
a lack of a further (meta) classification. In addition, the lack
of further meta levels is a serious limitation of programming
languages, too.
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Fig.7 Extending traditional object-oriented modeling: integration of objects and classes

This aspect of the prototypical strategy suggests devel-
oping a collection of known problems together with an
illustration of how to overcome the identified limitations with
multi-level modeling and, in the ideal case, with additional
multi-level programming languages. Such an approach could
build on several examples that exist to motivate the use of
multi-level modeling, e.g. [18,44,60,67,90,98], and the pat-
terns suggested by [31].

Language designers in particular have likely experienced
various serious problems. At first, traditional language archi-
tectures are characterized by a clear dichotomy between
modeling language and model. That does not only create
the problem how to decide whether a concept should be part
of a DSML or rather be specified with it, it also produces a
principal design conflict, cf. Sect. 3. Second, DSMLs are usu-
ally specified from scratch using generic metalanguages. As
argued in Sect. 3, it would often be more efficient to use more
general DSMLs for the specification of more specific ones,
which would result in a hierarchy of language layers. Third,
the specification of DSMLs is frequently compromised by a
lack of expressiveness, such as there is knowledge about a
domain that applies to all instances of models, but it cannot
be expressed in the DSML.

Figure 8 shows how multi-level modeling is suited to
directly address the above problems with the traditional
paradigm and, thus, offer language designers immediate ben-
efits. If, for example, a language designer wants to specify
a language for modeling IT infrastructures, the traditional
paradigm would force her to start from scratch with concepts
such as “class” and “attribute.” In the case of a multi-level
language hierarchy, she could start with the lowest language
level that still satisfies the specific requirements she has to
account for, which would serve as the (meta) language to
specify a more specific language. That corresponds directly
to the development of specific technical terminologies in nat-
ural language. Usually, one would start with a more general
language as they are, e.g., used in text books to create more
specific terms, which could be further refined to account for
more specific requirements. The example also illustrates their
reuse and the refinement of notation elements. Since a lan-
guage may comprise more than one level, there is not clear
distinction between different languages.

Protection of investments and transition costs must be
accounted for, too. Therefore, it seems reasonable to enable
a step-wise transition to multi-level modeling that starts
with modest extensions of existing conceptual models and
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language specifications. Figure 9 illustrates how this can  on users’ preferences, a model can be edited either with the
be achieved in a multi-level modeling tool such as the  diagram editor or with a model browser that includes an edi-
XModelertML, The introduction of additional (meta) classes tor for code and constraints. Hence, the distinction between
is not monotonic, but at first the changes that need tobe made =~ modeling and coding gets blurred, which is suited to narrow
to an existing model could be kept small. The screenshots in ~ the gap between developers and users. Finally, the resulting
Fig. 9 also illustrate the benefits of a common representation  software is integrated not only with its conceptual model,
of models and programs. First, a model can be directly exe-  but also with the language(s), the model was designed with.
cuted without the need to generate code. Second, depending  Thereby, users are empowered not only to open the blackbox
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Fig.9 Enriching developer and user experience by integrating modeling and coding

as which they usually experience software, but also to change

it to a certain extent at run time.
While this target group is probably receptive to reasonable

arguments, additional narratives should be useful, too. They
could address common professional practices, typical use
cases, but also account for conceptual hierarchies in natural

language.

5.3 Invigorating a great idea: reference models
reloaded

There is hardly any other idea in business informatics that
received as much attention and popularity as reference mod-
els [15,16,36,50]. On the one hand, it was motivated by
sobering empirical insights. Despite the considerable ben-
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efits offered by conceptual models in general, and enterprise
models in particular, many companies did not intend to work
with conceptual models. This was due to the substantial
effort required to develop and maintain large models and
the risk of failure. On the other hand, reuse has been seen
as a silver bullet of software development for long, since it
promises to achieve two goals simultaneously that are usu-
ally in conflict: high quality through thorough, professional
development, and relatively low acquisition costs through
economies of scale. Reference models were almost unani-
mously welcomed by the scientific community and they also
met with a positive response in many companies. Research
focused on the development of reference models and on
approaches to customize them (e.g., [38] presents a catalog
of 38 reference models). Despite obvious benefits and broad
support in academia, reference models did not become the
game changers they were supposed to be. An initiative that
adapted the idea of open source software to reference mod-
els [54] was not successful either. The limited adaptability of
reference models turned out to be a notable obstacle. Mod-
ifications, such as specialization, are restricted to the same
level of classification. If a reference model does not fit the
classification required in a specific case, it is not possible—
apart from the extensions of existing classifications through
specialization—to adapt the model through the introduction
of new classes. That would require at least one more level
of classification. This is what DSMLs aim at. However, they
suffer from the fact that they still require the manual cre-
ation of models. Therefore, supplementing reference models
with DSMLs is suited to improve the adaptability of refer-
ence models. However, in traditional language architectures
that would still create adaptability and integrity issues (see
Sect. 3).

If a reference model does not fit specific needs, modifying
it with a corresponding DSML should be safer and more con-
venient than using a GPML. However, a DSML is likely not
specific enough to enable efficient modifications and to pre-
vent inappropriate changes. This would, for example, be the
case, when a reference model of organizational structures for
a specific domain is supplemented with an organization mod-
eling language. Multi-level reference models would allow
integrating various DSMLs and specific reference models. If
areference model on the lowest level needs to be adapted and
specialization is not sufficient, a more specific DSML could
be used to guide the adaptation and to promote its consis-
tency. A demonstration of this idea applied to the domain of
smart grids is presented in [32]. The example shown in Fig. 8
illustrates that a multi-level model can integrate DSMLs and
reference models, thus combining their specific advantages.

The main target group of this prototypical strategy would
be the modeling community in business informatics. Demon-
strating the potential of multi-level modeling to overcome the
obstacles that prevented the success of reference model could
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be supplemented by an appealing narrative: “After all, it was
a great idea, only the required language architecture was not
available back then.”

5.4 Focus on user experience and empowerment:
prospects of multi-Level system architectures

So far, multi-level modeling has been mainly regarded as a
powerful tool for advanced modelers. Even with respect to
that group, there was a concern that the complexity of multi-
level models would overwhelm users. It may therefore seem
absurd to offer multi-level modeling to users who do not
have a specific qualification. This is certainly a valid point.
However, it does not have to prevent the use of multi-level
models by non-expert users. In general, the reduction of com-
plexity implies the increase of complexity at first. Usually,
the construction of a tool that allows reducing the complex-
ity of those tasks it is supposed to support will involve a
level of complexity that is clearly beyond the complexity
of the targeted tasks. In other words, while the foundational
construction of multi-level language environments involves
additional complexity, this complexity can be hidden more or
less depending on the needs and skills of prospective users,
who, at the same, time benefit from the reduction of com-
plexity through additional abstraction.

Many scenarios are conceivable to demonstrate the utility
of multi-level systems for users without specific modeling
competence. One example scenario would be the use of a
multi-level model, or in other words of multi-level DSMLs,
by domain experts to create and extend models of the domains
they are familiar with. For that purpose, they do not have to
work with a diagram. Figure 10 illustrates how a multi-level
model can be accessed and modified through a common GUI.
From a technical point of view, this would enable domain
experts to modify the (multi-level) schema of an informa-
tion system, which would either require the generation of
an implementation level representation or the common rep-
resentation of models and programs, cf. Sect. 4. Users are
not bothered with the peculiarities of language semantics or
notation. Instead, they work with the concepts they are famil-
iar with. The tool guides them with structuring the domain
appropriately.

A further scenario concerns a multi-level architecture of
enterprise software systems such as ERP systems. The use
of these systems is restricted to objects on MO. The schema
level (M1) is usually hidden from users. While hiding higher
levels of classification from users might contribute to a reduc-
tion of complexity, it has two notable shortcomings. First,
these systems remain to a large extent black boxes to the
users. The conception users can develop of a system is
restricted to the user interface they experience, and is typ-
ically confined to those use cases they are familiar with.
Second, as a consequence of the first, most users do not know
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Fig. 10 Implicit multi-level modeling and corresponding diagram

whether and how a system can be modified. With respect
to the ongoing penetration of organizations with software,
both aspects have the potential to increase employees’ alien-
ation not only from a technology they do not understand, but
from the surroundings they work in. In addition, it hinders
the efficient modification of systems by those who know the
domain and the requirements. A multi-level system architec-
ture would enable navigating the conceptual foundations of
a model through introspection. An object can be asked for
the properties of its class, which in turn can be asked for
its (meta) class. To take advantage of introspection for non-
expert users, it would be required to represent the various
levels of a system’s conceptual foundation in an accessible
way, e.g., by diagrams created with DSMLs or browsers like
the one shown in Fig. 10.

This idea corresponds to the conception of “self-referential
enterprise systems” (SRES), which has been proposed some
time ago already [42]. It is based on the integration of an
enterprise software system with an enterprise model that

provides a conceptualization of both, the software and the
organizational action system, the software operates in (see,
e.g., [52]). The benefits of SRES were demonstrated by var-
ious use cases, cf. [42]. However, the proposed software
architectures were clearly limited, because they were based
on a MOF-like language hierarchy. Multi-level system archi-
tectures would enable the common representation of models
and programs at run time. In addition, they would allow for
navigating multiple levels of classification and for modifying
models—provided a user has the knowledge of the affected
domain concepts and the required authorization.

This strategy could be supported by a narrative on the fact
that software is more and more determining the way we work
and make decisions. Therefore, reducing software to black
boxes is a serious threat to self-determination and the ideas of
enlightenment in general. Opening the black boxes through
accessible representations would contribute to empowering
users by fostering a deeper understanding of software and its
adaptability.

@ Springer



U. Frank

6 Conclusions and future work

This paper presents a rationale for multi-level modeling that
demonstrates its strengths and prospects and that is suited
to motivate an intensification of current research efforts. To
that end, we show that multi-level modeling represents an
outstanding, if not the most important contribution to con-
ceptual modeling in the recent past. Among other things, the
additional abstraction it allows for enables relaxing essential
design conflicts. It is also suited to combine specific benefits
of conceptual models with those of DSMLs. Different from
traditional DSMLs, the design of multi-level DSMLs does
not suffer from the need to artificially distinguish between
language specification and language application.

Moreover, our recourse to findings in cognitive linguistics
and cognitive psychology invalidates a reservation some-
times expressed against multi-level modeling, namely that
the distinction of multiple levels of classification does not fit
human cognition. Instead, there are indications that the alien-
ation sometimes triggered by multi-level models is not due
to their contrast to natural language, but rather to their con-
trast to traditional approaches. While multi-level modeling
can indeed be seen as a new paradigm, this does not mean
that it can blossom only after the prevailing paradigm has
been defeated. Different from Kuhn’s conception of scientific
progress through a war of paradigms, the multi-level com-
munity does not have an “independent existence” [71,p. 117]
that separates it from other communities. Furthermore, multi-
level modeling can be seen as an almost monotonic extension
of traditional object-oriented modeling. Therefore, there is no
need to fight the current paradigm.

The prospects of multi-level modeling are contrasted by
challenges that are not easy to overcome. With respect to
protection of investment, one could demand for the stan-
dardization of multi-level modeling languages. However, we
believe that it is too early for freezing the current state.
Instead, there is need for competition that is based on the
spirit of common convictions to address remaining research
questions (see below). For that purpose, the dissemination of
multi-level modeling in academia and practice is of pivotal
relevance. We suggest four prototypical strategies to build
incentives for using multi-level modeling. We also show that
supplementing multi-level modeling languages with multi-
level programming languages is a promising approach in that
respect.

To promote the dissemination of multi-level modeling, it
is important that it is accounted for in curricula of univer-
sity programs. That recommends at first the development of
a consistent and satisfactory common terminology, which
would at best be organized as a community project. In addi-
tion, there is need for the development of specific analysis
and design methods. Furthermore, the collective design and
implementation of a prototypical multi-level application sys-
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tem, e.g., a small ERP system, could serve as both, an open
laboratory for testing and further developing multi-level con-
cepts and tools, and as a showcase to demonstrate specific
benefits enabled by multi-level architectures. To that end,
more research is needed to assess and, at best, measure the
effect of additional levels of (intrinsic) classification with a
high degree of validity and reliability.

To take advantage of the additional abstraction enabled by
multi-level modeling, elaborate domain theories are manda-
tory. The development of domain theories falls in the realm
of other disciplines. At the same time, structuring a domain
theory with respect to the abstraction concepts provided by
multi-level modeling requires specific modeling expertise.
Therefore, cross-disciplinary collaboration would be espe-
cially important. The digital transformation is suited to make
such a collaboration particularly exciting for researchers
from all participating fields: There is not only need for the-
ories that describe or explain domains as they are, but also
as they might be in the future in order to investigate possible
paths of change.

While core concepts of multi-level modeling have reached
a rather mature state, there are still appealing opportunities
for future research. The semantics of contingent level classes,
or more general, of models that include contingencies, still
requires further clarification. For those approaches that are
based on logic, there might be the option to include aspects of
modal logic. Approaches that use object-oriented concepts
may require splitting contingent models, e.g., by defining
separate name spaces that are used to manage particular,
consistent parts of contingent models. Even for multi-level
models, which have been developed with great care, it may
turn out that aspects that were assumed to be invariant have
to be changed. Due to multiple, cross-level dependencies,
refactoring multi-level models creates considerable chal-
lenges, which recommends further research into strategies
that support efficient and consistent management and change
of models. For an approach to address this challenge with a
pattern catalogue, see [29].

Since the current friction between multi-level models
and prevalent programming languages is suited to compro-
mise the advantages of multi-level models as a foundation
of software systems, more research on multi-level (meta)
programming languages is required. That includes the anal-
ysis of static typing vs. dynamic typing and the integration
with modeling languages. With respect to the prospects of
multi-level system architectures, research on common repre-
sentations of models and programs at run time is especially
relevant, because it opens the perspective on software that
empowers its users. Related to that, research on architectures
that enable substantial changes—by taking advantage of the
abstraction provided by higher levels of an architecture—is
especially promising, because it would address the need to
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cope with fundamental changes as they may be required by
the digital transformation.

Machine learning builds the foundation for a different
stream of research on multi-level modeling. Even though
we are reluctant to believe in Domingos’s prediction that
machine learning will replace knowledge engineers in the
near future [33, p. 36], the use of inductive approaches,
provided appropriate data are available, might help with
developing candidates for higher-level classes.

Finally, more research is required to address one of the
biggest challenges, which is at the same time of great impor-
tance in promoting the usefulness of multi-level modeling.
Previous research was mainly focused on static abstractions.
The development of multi-level dynamic abstractions, that is,
multi-level process models could contribute to clearly raise
reuse and adaptability of process types. A Dagstuhl seminar
that was dedicated to this subject [2] and a specific multi-
modeling contest [1] confirmed the relevance of multi-level
dynamic abstractions as well as the great difficulties their
construction faces—which translates to a promising research
opportunity.
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